• 제목/요약/키워드: 유연다물체동역학

검색결과 75건 처리시간 0.03초

와이퍼 블레이드의 누름압 해석 (Contact Pressure Analysis of a Windshield Wiperblade)

  • 이병수;신진용
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

인공위성 전개장치용 테잎힌지 특성 해석

  • 김경원;임재혁;김창호;김선원;김성훈
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.167.1-167.1
    • /
    • 2012
  • 본 논문에서는 인공위성 전개장치용 테잎힌지 특성해석을 수행하고 그 결과에 대하여 분석하였다. 테잎힌지를 이용한 전개장치는 신뢰성이 높고, 형상이 매우 단순하며, 제작단가 또한 저렴하여 우주용 안테나 및 태양전지판에 널리 이용이 되고 있다. 테잎힌지를 이용한 전개장치의 전개특성은 테잎힌지 특성에 의하여 좌우가 되므로 안전성 있는 전개장치 설계를 수행하기 위해서는 가능한 정확한 해석이나 계산이 요구되어진다. 초기에는 쉘 이론등을 바탕으로 테잎힌지의 전개특성을 계산하는 식들이 연구되었으나 테잎힌지의 강한 비선형성 때문에 정확성이 많이 떨어지는 큰 단점이 존재하였다. 이후 많은 연구를 통하여 유한요소모델을 이용한 비선형해석을 통하여 비로소 정확한 전개특성을 해석할 수 있게 되었다. 본 논문에서는 다물체 동역학해석프로그램인 리커다인의 유연체 해석모듈을 이용하여 테잎힌지에 대한 특성해석을 수행하였다. 해석결과 신뢰성 있는 테잎힌지의 전개거동 확인 및 전개특성을 계산할 수 있었다.

  • PDF

유연 다물체 동역학을 이용한 포신-포탑시스템의 진동해석 (Gun System Vibration Analysis using Flexible Multibody Dynamics)

  • 김성수;유진영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.166-172
    • /
    • 1997
  • In order to find out relationship between hit probability and gun firing of a moving tank, a turret and flexible gun system model has been developed using the recursive flexible multibody dynamics. For a firing simulation model, nodal coordinates for a finite element model of a flexible gun have been employed to include traverse loads to the gun tube due to moving bullet and ballistic pressure. Modal coordinates are also used to represent the motion induced gun vibration before a firing occurs. An efficient switching technique from modal equations to nodal equations has been introduced for an entire gun firing simulation with rotating turret.

  • PDF

120밀리 자주박격포 사격 충격에 따른 마운트 구조 안정성 분석 (Structural Stability Analysis of a Mount in 120mm Self-propelled Mortar)

  • 김동휘
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.836-843
    • /
    • 2018
  • In this paper, dynamic model of 120mm self-propelled mortar is developed, and multi flexible body dynamics analysis is performed to analyze stresses occurring in the mount during mortar fire. For this, vehicle dynamic system, mortar dynamic system, and finite element mount model are proposed. The commercial program Recurdyn is used in the analysis. As a result of the analysis, the maximum stress(146.9MPa) occurred at the mount side plate. In order to analyze the validity of the analysis results, we performed strain measurement tests by selecting three major points, and the errors of results were 7.91%, 11.15%, and 18.23%, respectively. It is confirmed that the tendency of analysis and test is similar.

유연 다물체 동역학 해석을 이용한 4축 이적재 로봇의 주요 부품 선정 (Selecting Main Parts of a Four-Axis Palletizing Robot Through Dynamic Analysis of Rigid-Flexible Multibody Systems)

  • 박일환;고아라;설상석;홍대선
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.54-63
    • /
    • 2022
  • Among the various industrial robots, palletizing robots have received particular attention because of their higher productivity in accordance with technological progress. When designing a palletizing robot, the main components, such as the servo motors and reducers, should be properly selected to ensure its performance. In this study, a practical method for selecting the motors and reducers of a robot was proposed by performing the dynamic analysis of rigid-flexible multibody systems using ANSYS and ADAMS. In the first step, the links and frames were selected based on the structural analysis results obtained from ANSYS. Subsequently, a modal neutral file (MNF) with information on the flexible body was generated from the links and frames using modal analysis through ANSYS and APDL commands. Through a dynamic analysis of the flexible bodies, the specifications of the major components were finally determined by considering the required torque and power. To verify the effectiveness of the proposed method, the analysis results were compared with those of a rigid-body model. The comparison showed that rigid-flexible multibody dynamic analysis is much more useful than rigid body analysis, particularly for movements heavily influenced by gravity.

경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동 (Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope)

  • 하태완;박정수
    • 한국군사과학기술학회지
    • /
    • 제23권5호
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

실험적 모드해석을 이용한 다물체계내 유연체의 변형보드 계산 (Computation for Deformation Modes of a Flexible Body in Multibody System using Experimental Modal Analysis)

  • 김효식;김상섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1718-1723
    • /
    • 2003
  • This paper presents a computational method for deformation modes of a flexible body in multibody system from the experimental modal analysis and an efficient method for flexible multibody dynamic analysis by use of the modes. It is difficult to directly use experimental modal parameters in flexible multibody dynamic analysis. The major reasons are that there are many inconsistencies between experimental and analytical modal data and experimental noises are inherent in the experimental data. So two methods, such as, a method for ortho-normalization of experimental modes and the other one for mode expansion, are suggested to gain deformation modes of a flexible body from the experimental modal parameters. Using the virtual work principle, the equation of motion of a flexible body is derived. The effectiveness of the proposed method will be verified in the numerical example of cab vibration of a truck by comparing analysis and test results.

  • PDF

휠체어 전동주행 보조기기용 커넥터의 구조안정성 해석 (Structural Stability Analysis of Connectors for an Electric Handbike)

  • 서한울;김대동;고철웅;이준흠;배태수
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.491-496
    • /
    • 2015
  • Electric handbike can be easily detachable to various sizes of manual wheelchair and the elderly and people with disabilities can use them easily. Therefore, connectors used for coupling between the handbike and manual wheelchair must secure structural stability for occupant safety. However, related research is rare. The aim of this study is to find the connector with highly structural stability by comparing static and dynamic mechanical characteristics among three typical connectors(a snatch lock, a slide latch, and a fastener) by computational simulations. To perform static and dynamic simulation, we referred to durability test based on Korean Standards and then calculated mechanical stresses in connectors. The results showed that the snatch lock addressed the lowest von-mises stress under the same mechanical condition. Therefore when using the combination of a handbike and a wheelchair, we concluded that the snatch lock is considered as the structurally stable connector to structural stability and usability.

대형 패널 이송 로봇에 사용되는 타이밍벨트 구동계의 모델링 (Modeling of a Timing-Belt Drive System Used in a Large-Scale Panel-Handling Robot)

  • 조은임;임성수
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.915-921
    • /
    • 2013
  • Most of large scale solar panel handling robots adopt the timing-belt drive system for its driveline because of the simplicity and the easiness of implementation. The vibration caused by the flexure of the timing belt would increase as the size and the weight of the panel that the robot handles increase and the vibration would deteriorate the precision and/or productivity of the whole robot system. For the development of a proper control system and for the improvement of the design of the robot it is important to estimate the oscillatory response of the robot system including the flexible drive system properly. In this paper a flexible multi-body dynamics model of a large-scale solar-panel-handling robot with the flexible timing-belt drive system is developed using a generic multi-body dynamics analysis program, RecurDyn.

자기부상열차/가이드웨이 동적상호작용 해석 (Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway)

  • 김기정;한형석;양석조
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1559-1565
    • /
    • 2013
  • 고가가이드웨이를 주행하는 상전도흡인식 자기부상열차(EMS-Type Maglev)는 가이드웨이의 유연성으로 인하여 전자석 현가시스템과 동적 상호작용을 일으켜 부상공극에 영향을 미친다. 특히, 전체 건설비를 줄이기 위하여 경량화 가이드웨이를 지향하면서 시스템 설계단계부터 차량과 가이드웨이 사이의 동적상호작용 해석에 의한 심도 있는 부상공극 분석이 더욱 필요하다. 본 논문에서는 보다 정교한 차량/가이드웨이 동적상호작용 해석모델이 제안된다. 제안된 모델은 가상시제 기반의 3 차원 전체차량, 모달합성법에 의한 유연 가이드웨이 및 피드백 제어기가 포함된 부상전자석의 동적 모델들이 하나로 통합된 것이다. 제안된 모델을 도시형 자기부상열차에 적용하여 차량의 속도와 레일조도가 부상공극 및 가이드웨이에 미치는 영향을 분석하였다.