• Title/Summary/Keyword: 유연관절로봇

Search Result 39, Processing Time 0.025 seconds

A Study on Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 예측에 관한 연구)

  • Lee, Ki-Joo;Yim, Hong-Jae;Kang, Yun-Seok;Park, Joong-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.559-562
    • /
    • 2005
  • When we analyze dynamics of a multi body system, a compliance of joints must be considered. If the virtual model for CAE(computer adied engineering) analysis is not considered compliance, the result of CAE analysis will be very different from the actual result. Especially in a biped walking robot, a compliance can be caused in joints of a walking robot, and the robot may lose walking stability. This paper proposes a compliance modeling method and the effectiveness of the compliance model is verified through experiments.

  • PDF

A Study on Computer Simulation of Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 시뮬레이션에 관한 연구)

  • Lee, Ki-Joo;Park, Joong-Kyung;Lim, Si-Hyung;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • Compliance of joints must be considered when we analyze dynamics of a multi-body system. If the virtual model for CAE(computer aided engineering) analysis does not consider compliance, the result of CAE analysis can be very different from the actual experimental result. Especially in a biped walking robot, the robot may lose walking stability due to the compliance in joints of a walking robot. This paper proposed a method applying a compliance of joints in the biped walking robot to a virtual model. Also, through the 3-D displacement measurement using a laser tracker, it was demonstrated that the virtual model considering the joint compliance could effectively simulate the nonlinear motion of the real model.

Exact External Torque Sensing System for Flexible-Joint Robot: Kalman Filter Estimation with Random-Walk Model (유연관절로봇을 위한 정확한 외부토크 측정시스템 개발: 랜덤워크모델을 이용한 칼만필터 기반 추정)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, an external torque estimation problem in one-degree-of-freedom (1-DOF) flexible-joint robot equipped with a joint-torque sensor is revisited. Since a sensor torque from the joint-torque sensor is distorted by two dynamics having a spring connection, i.e., motor dynamics and link dynamics of a flexible-joint robot, a model-based estimation, rather than a simple linear spring model, should be required to extract external torques accurately. In this paper, an external torque estimation algorithm for a 1-DOF flexible-joint robot is proposed. This algorithm estimates both an actuating motor torque from the motor dynamics and an external link torque from the link dynamics simultaneously by utilizing the flexible-joint robot model and the Kalman filter estimation based on random-walk model. The basic structure of the proposed algorithm is explained, and the performance is investigated through a custom-designed experimental testbed for a vertical situation under gravity.

Network Realization for a Distributed Control of a Humanoid Robot (휴머노이드 로봇의 분산 제어를 위한 네트윅 구현)

  • Lee Bo-Hee;Kong Jung-Shik;Kim Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.485-492
    • /
    • 2006
  • This paper deals with implementation of network for distributed control system of a humanoid robot ISHURO(Inha Semyung Humanoid Robot). A humanoid robot needs much degree of freedom structurally and much data for having flexible movement. To realize such a humanoid robot, distributed control method is preferred to the centralized one since it gives a compactness, modularity and flexibility for the controllers. For organizing distributed control system of a humanoid robot, a control processor on a board is needed to individually control the joint motor and communication technology between the processors is required to transmit its information within control time. The processor is DSP-based processor and includes CAN network on a chip. It shares the computational load such as monitoring the sensor information and controlling the actuator between each of modules. In this paper, the communication architecture is suggested and its message protocol are discussed including message structure, time consumption for transmission, and controller structure at the view of distributed control for a humanoid robot. All of the sequence are simulated with Matlab and then verified with real walking experiment by ISHURO.

Dynamic Output Feedback Passivation of Nonlinear Systems with Application to Flexible Joint Robots (비선형 시스템의 동적 출력 궤환 수동화의 유연 관절 로봇에의 적용)

  • Son Young-Ik;Lim Seungchul;Kim Kab-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1256-1263
    • /
    • 2004
  • Output feedback passivation problem is studied when the given system is not minimum-phase or does not have relative degree one. Using a parallel connection with an additional dynamics, the authors provide a dynamic output feedback control law which renders the composite system passive. Sufficient conditions are presented under which the composite system is output feedback passive. As an application of the dynamic passivation scheme, a point-to-point control law for a flexible joint robot is presented when only the position measurements are available. This provides an alternative way of replacing the role of the velocity measurements for the proportional-derivative (PD) feedback law. The performance of the proposed control law is illustrated in the simulation studies of a manipulator with three revolute elastic joints.

Controller Design for Flexible Joint of Industrial Robots: Part 1 - Modeling of the Two-Mass System (산업용 로봇의 유연관절 제어기 설계: Part 1 - 2관성계 모델링)

  • Park Jong-Hyeon;Lee Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.269-276
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents the vibration mechanism of an industrial robot which has flexible joints. The joint flexibility of the robot is modeled as a two-mass system and its dynamic characteristics are analysed. And some characteristics of the two-mass system, especially for the joint of industrial robots, such as disturbance, non-linearity and time-varying characteristics are studied. And finally, some considerations on controller design for the flexible joint of industrial robots are discussed.

Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis (기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발)

  • Geon Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

Controller design for single link robot with flexible joint using nonlinear observer (비선형 관측기를 이용한 유연한 관절을 가진 로봇 팔의 제어기 구성)

  • Lee, Jang-W.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1128-1130
    • /
    • 1996
  • A canonical form observer design method for nonlinear systems is studied. Through this method, an observer of single link robot system with flexible joint is proposed. It is shown through simulation that the system can be stabilized when using the nonlinear feedback linearizing controller and the supposed observer.

  • PDF

Gait Pattern Generation of S-link Biped Robot Based on Trajectory Images of Human's Center of Gravity (인간의 COG 궤적의 분석을 통한 5-link 이족 로봇의 보행 패턴 생성)

  • Kim, Byoung-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2009
  • Based on the fact that a human being walks naturally and stably with consuming a minimum energy, this paper proposes a new method of generating a natural gait of 5-link biped robot like human by analyzing a COG (Center Of Gravity) trajectory of human's gait. In order to generate a natural gait pattern for 5-link biped robot, it considers the COG trajectory measured from human's gait images on the sagittal and frontal plane. Although the human and 5-link biped robot are similar in the side of the kinematical structure, numbers of their DOFs(Degree Of Freedom) are different. Therefore, torques of the human's joints cannot are applied to robot's ones directly. In this paper, the proposed method generates the gait pattern of the 5-link biped robot from the GA algorithm which utilize human's ZMP trajectory and torques of all joints. Since the gait pattern of the 5-link biped robot model is generated from human's ones, the proposed method creates the natural gait pattern of the biped robot that minimizes an energy consumption like human. In the side of visuality and energy efficiency, the superiority of the proposed method have been improved by comparative experiments with a general method that uses a inverse kinematics.

Experimental Evaluation of Neural Network Based Controllers for Tracking the Tip Position of Flexible-Link (신경회로망을 이용한 유연한 관절의 선단위치 tracking 제어기에 관한 실험적 평가)

  • 최부귀;이형기;박양수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.738-746
    • /
    • 1998
  • This paper presents a neural network-based adaptive controller for a single flexible-link. The control for feedback-error loaming of neural network is designed by using the re-definition approach. The neural network controllers are implemented on an single flexible-link experimental test-bed. The tip response is significantly improved and the vibrations of the flexible modes are damped very fast. Experimental and simulation results are presented of the proposed tip position tracking controllers over the conventional PD-type, passive controllers.

  • PDF