• Title/Summary/Keyword: 유역환경변화

Search Result 1,068, Processing Time 0.027 seconds

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.

Community Structure and Species Composition of Pinus densiflora for. erecta Forest in Mt. Cheonchuk (천축산 일대 금강소나무림의 군집구조 및 종조성)

  • Byeon, Jun Gi;Park, Byeong Joo;Joo, Sung Hyun;Cheon, KwangIl
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This study was conducted to analyze community structure and species composition of Pinus densiflora for. erecta Stand in Mt. Cheonchuk (653 m). Field survey was carried out from June to September in 2013. 74 plots (20×20 m) were set up, 5 herb layer plots (3×3 m) were constructed for each plot, and there, Diameter at Breast Heigh t(DBH), height, environmental factor, annual growth were measured. Vascular plants were surveyed as following; 66 family, 165 genus, 211 species, 2 sub species, 29 variety, 6 form 248 taxa. Results of cluster analysis for P. densiflora for. erecta forest, 3 communities were divided into; Quercus mongolica (P-1), Quercus variabilis (P-2) and Quercus aliena-Stephanandra incisa (P-3). There were significant environmental factors that organic layer, annual growth, CEC, total total nitrogen, organic matter and pH for each community. As a result of DCA, P-1 and P-2 were distributed large range of environmental factors but relatively limited in P-3. Distributions of herb layer were affected by sand, cation exchange capacity, silt and total nitrogen. Results of MRPP test for herb layer communities, it was significantly analyzed (A=0.003, P<0.008). Species diversity index was highly recorded in P-3 and influenced by cation exchange capacity, total nitrogen, annual growth in consequence of NMS analysis.

Recovery of Fish Community and Water Quality in Streams Where Fish Kills have Occurred (어류폐사의 발생 이후 하천에서 수질의 변화 및 어류상 회복)

  • Lee, Jae-Yong;Lee, Kwang-Yeol;Lee, Saeromi;Choi, Jaeseok;Lee, Seok-Jong;Jung, Sungmin;Jung, Myoung-Sook;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.154-165
    • /
    • 2013
  • The species composition of the fish community was studied in four streams where fish kills have previously occurred in recent years; Worun Stream, Seo Stream, Jangnam Stream, and the Anyang Stream. The number of fish species varied from 22 to 86% compared to the number of fish species pre-fish kill. The recovery of fish populations in the streams seems to be determined by water quality and the presence of artificial structures in the streams. The Jangnam Stream, where alkaline pH caused a fish kill, showed a high recovery of fish species due to improvements in water quality. Anyang Stream had a low number of species, possibly because dissolved oxygen concentrations were intermittently low. Artificial structures in streams had a negative impact the recovery of fish species, particularly for benthic fish species. It appears that fish populations can recover rapidly when water quality improves or the movement of fish community is unimpeded. However, water quality and artificial structures in many streams in Korea still present adverse conditions for fish survival, deterring the recovery of fish populations. To conserve fish populations in streams, habitat all owing unimpeded movement for fish and controls on pollutant inputs are needed.

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF

Investigation of the Effect of Weirs Construction in the Han River on the Characteristics of Sediments (보 설치가 퇴적물 특성에 미치는 영향에 관한 연구)

  • Kang, Min Kyoung;Choi, In Young;Park, Ji Hyoung;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.597-603
    • /
    • 2012
  • To investigate the effects of weir construction on sediment characteristics of river bed, we conducted sediments sampling on the 9 locations near the weir, Kangchun, Yuju and Ipo in Namhan-River. Physical and chemical characteristics of sediments were analyzed by measuring particle size distribution, water content, Ignition loss, COD (Chemical Oxyzen Demand), TOC (Total Organic Carbon), TP (Total Phosphorus), SRP (Soluble Reactive Phosphorus) and TN (Total Nitrogen). Particle classification of all three weir sediments showed sandy loam that was caused by the river bed dredging. Due to the presence of weir, Ignition loss, COD, TOC, TP, SRP and TN showed similar trend such as the concentrations of upward weir had higher than those of downward weir. For the case of SRP concentration and C/N ratio, however, there is not much difference in the sediment characteristics compared to the those of sediments before weir construction. Therefore, It can be predicted that there are little effects of weir construction on sediment characteristics. However, weir construction could influence water quality of the river by controlling the transport and the accumulation of suspended materials from rainfall. Therefore, more intensive monitoring is required to examine the magnitude and patterns of sediment accumulation which could influence overlying water quality.

A Study on Drop Shaft Bottom of Maximum Pressure of the Deep Tunnel by Stilling Basin of Depth (대심도 터널의 수직 유입구 감세지 깊이에 따른 바닥면 최대압력 비교 연구)

  • OH, Jun Oh;Park, Jae Hyeon;Park, Chang Keun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.74-74
    • /
    • 2015
  • 최근 홍수의 특성과 피해 양상은 과거와는 다르게 변화하고 있으며, 급격한 도시화로 인하여 기존 하천유역의 저류 능력이 감소하였으며 이러한 한계를 극복하기 위하여 이미 외국에서는 대심도 터널을 활용한 홍수재해 관리방안이 오래전부터 활용되어 왔다. 본 연구에서는 대심도 터널의 유입구, 수직갱, 감세지, 배수터널과 같은 시설물 중 대심도 터널 설계 시 수직 유입구를 통해 유입되는 유량의 에너지를 완화하고 효과적으로 배수 할 수 있도록 중요한 역할을 하는 감세지의 효율적인 깊이 산정을 위하여 수리모형실험을 실시하였으며, 모형은 Froude 상사법칙을 사용하여 원형의 1/18크기로 제작하였다. 본 연구에서 실시한 감세지 모형의 깊이는 0.278 m(원형 5.0 m), 0.417 m(원형 7.5 m)이며, 각 감세지 깊이별 수직 유입구 3개소(저지수직구1, 저지수직구2, 고지수직구) 및 5가지의 유량 CASE에 대하여 감세지 바닥면 압력을 비교?분석 하였다. 수직 유입구 3개소의 설계조건에 따른 감세지 깊이별 바닥면 압력 분포 평가를 실시한 결과 저지수직구1의 감세지 깊이 0.278 m(원형 5.0m)에서는 최대 압력이 4번 지점에서 $0.075kg/cm^2$(원형 1.30 MPa)이 측정 되었으며, 0.417 m(원형 7.5m)에서는 최대 압력이 1번지점에서 $0.089kg/cm^2$(원형 1.54MPa)이 측정되었다. 또한 저지수직구2의 감세지 깊이 0.278 m(원형 5.0 m)에서는 최대 압력이 1번 지점에서 $0.074kg/cm^2$(원형 1.28 MPa)이 측정 되었으며, 0.417 m(원형 7.5 m)에서는 최대 압력이 2번지점에서 $0.088kg/cm^2$(원형 1.52 MPa)이 측정되었다. 고지수직구의 감세지 깊이 0.278 m(원형 5.0 m)에서는 최대 압력이 3번 지점에서 $0.082kg/cm^2$(원형 1.42 MPa)이 측정 되었으며, 0.417 m(원형 7.5 m)에서는 최대 압력이 1번지점에서 $0.092kg/cm^2$(원형 1.59 MPa)이 측정되었다. 본 연구에서 실시한 수리모형실험의 결과 저유량에서 고유량으로 갈수록 최대압력지점은 반시계방향으로 움직이는 것을 알 수 있으며, 이는 수직 유입구의 설계조건에 따른 수직갱에서의 회전수차에 의하여 발생하는 것으로 분석하였다. 따라서 적절한 감세지 깊이 산정을 위해서 대심도터널의 수직 유입구(유입구형태, 수직갱)의 평가가 함께 유기적으로 이루어져야 할 것으로 판단된다.

  • PDF

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.

Development and application of integrated indicators for assessing the water resources performance of multi-purpose and water supply dams (댐 용수공급능력 안정성 평가를 위한 통합지표 개발 및 적용)

  • Sung, Jiyoung;Kang, Boosik;Kim, Bomi;Noh, Seongjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.687-700
    • /
    • 2022
  • For comprehensively assessment the water resources performance of multi-purpose dams and water supply dams in South Korea, a methodology was proposed to utilize the durational reliability along with the integrated auxiliary indicators including resiliency, dimensionless vulnerability, water resource efficiency, specific inflow, and specific water supply. In addition, for the purpose of sustainable dam operation in the future, a plan to grade the water resources performance was presented to periodically evaluate the performance and determine the priority of each dam's structural or non-structural planning according to the evaluation results. As major results, in the case of Sumjingang Dam, the durational reliability was 99.0%, but the integrated auxiliary index was the lowest of 44 points, which was 5th grade. This means that despite the current high reliability, hydrological changes due to future climate change or regional change of water demand-supply balance can have significant impacts on the water resources performances. In contrast, the Chungju Dam with a durational reliability of 93.0%, which is below the average among all multi-purpose dams, shows the 76 points of the integrated auxiliary index, which is 3rd highest following the Soyanggang Dam and the Namgang Dam. Nevertheless, due to the size of the basin, the specific inflow is sufficiently high as 185%, so the actual performance could be evaluated relatively high. The water supply dams designed for a single purpose tend to be evaluated relatively high because they have a high proportion of industrial and municipal water supply and have enough room for the supply capacity.

A Study on Water-level Rise Behavior Curve using Historical Record (기왕자료를 이용한 수위상승거동곡선에 관한 연구)

  • Kwak, Jaewon;Kim, Gilho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.601-610
    • /
    • 2023
  • The comprehension of water-level behavior in rivers is essential for effective flood and river environmental management. The objective of this study is to propose a methodology that can be used by field engineers engaged in actual practice, to readily identify the characteristics of water-level behavior during flood events. To this end, a total of 45 historical water-level records from 2010 to 2022 year, which provide flood information for the flood vulnerable districts of the Han River, were obtained. A Water-level Rise Behavior Curve (WRBC) was developed and suggested to quantify the amount of water-level rise per unit time during flood. As a result, the water-level rises by more than 80% of the total rise within the first 6.2 hours, followed by a gradual rise. The time required to achieve a particular equilibrium varied depending on the area and runoff characteristics of the upstream. Furthermore, the study revealed that the WRBC provides a statistical representation of the water-level rise trend during floods, and can be effectively utilized for flood mitigation measures in waterfront spaces and irrigation facilities.