• Title/Summary/Keyword: 유역출구

Search Result 127, Processing Time 0.032 seconds

Geomorphic development of the Jeogchung·Chogye Basin and inner alluvial fan, Hapcheon, South Korea (합천 적중·초계분지와 분지 내 선상지 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.225-239
    • /
    • 2016
  • The Jeogchung Chogye Basin shows perfect basin formation surrounded with divides, excluding outlet where Sannae River combining various small rivers escapes the basin. High mountains distribute at southwestern, southern and southeastern divides of the basin consisting of hornfels, while hilly mountains are found at northern divide consisting of sedimentary rock. Alluvial fans and flood plains occupy bottom of the basin. While extensive alluvial fans are found at the front of southern divide where rivers with large drainage areas rise, alluvial fans toward eastern and western divides become small due to low elevation of divides. Flood deposits by Hwang River are attributed to development for most of flood plains at northern part of the basin. The basin seems to be developed not by differential erosion or meteorite impact, but by bedrock weathering along lineament or fault lines by ground motion.

  • PDF

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 공간 입력자료의 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1079-1094
    • /
    • 2008
  • This study is to evaluate the impact of varying spatial resolutions on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, non-point source (NPS) pollution loads transport in a small agricultural watershed (1.21 $km^2$) for three cases of model input; Case A is the combination of 2 m DEM, QuickBird land use, Case B is the combination of 10 m DEM, 1/25,000 land use, and Case C is the combination of 30 m DEM, Landsat land use, soil data is used 1/25,000 for three cases respectively. The model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality records, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and RMSE were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The model was run for a small agricultural watershed with three cases of spatial input data. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow. On the other hand, The NPS loadings from the model prediction showed that the sediment, T-N and T-P of QuickBird land use (Case A) showed 23.7 %, 43.3 % and 48.4 % higher value than 1/25,000 land use (Case B) and 50.6 %, 50.8 % and 56.9 % higher value than Landsat land use (Case C) respectively.

Analysis of Flood Control Effect by Applying the Connecting Channel in Estuary Area Including the Confluence of Two Rivers (2개의 하천이 합류하는 하구역에서의 연결수로 통수능에 따른 홍수위저감효과 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1065-1075
    • /
    • 2015
  • In the estuary where the structure such as river-mouth weir has been installed, the flow is developed very complicatedly due to river water from upstream, tide of the sea and floodgate operation. Especially, if basin outlets more than one exists in one estuary, the boundary conditions will be significantly more complex form. Saemangeum(SMG) project area in Korea is the most typical example. There are Mankyung river and Dongjin river in upstream. The water of them inflows into SMG project area. In the downstream, river flow was drained from inland to sea over the SMG sea dike through the sluice. The connecting channel was located between Mankyung and Dongjin basins. It functions not only as transportation by ship in ordinary period but also as flood sharing by sending flood flow to each other in flood period. Therefore, in order to secure the safety against flood, it is very important to understand the flood sharing capacity for connecting channel. In this study, the flood control effect was analyzed using numerical simulation. Delft3D was used to numerical simulation and simulated period was set up with neap tide, in which the maximum flood stage occurred due to poor drainage. Actually, three connecting channels were designed in land use plan of the SMG Master Plan, but they were simplified to a single channel for conciseness of analysis in this study. According to the results of numerical analysis, the water level difference between two basins was increased and the maximum flood stage at dike sluice was also upraised depending on decrease of conveyance. And the velocity induced by same water level difference was decreased when the conveyance became smaller. In certain conveyance above, there was almost no flood control effect. Therefore, if the results of this study are considered for design of connecting channel, it will be expected to draw the optimal conveyance for minimizing dredging construction cost while maximizing the flood control effect.

Development of Soil Erosion Analysis Systems Based on Cloud and HyGIS (클라우드 및 HyGIS기반 토양유실분석 시스템 개발)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Jin-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.63-76
    • /
    • 2011
  • This study purposes to develop a model to analyze soil loss in estimating prior disaster influence. The model of analyzing soil loss develops the soil loss analysis system on the basis of Internet by introducing cloud computing system, and also develops a standalone type in connection with HyGIS. The soil loss analysis system is developed to draw a distribution chart without requiring a S/W license as well as without preparing basic data such as DEM, soil map and land cover map. Besides, it can help users to draw a soil loss distribution chart by applying various factors like direct rain factors. The tools of Soil Loss Anaysis Model in connection with HyGiS are developed as add-on type of GMMap2009 in GEOMania, and also are developed to draw Soil Loss Hazard Map suggested by OECD. As a result of using both models, they are developed very conveniently to analyze soil loss. Hereafter, these models will be able to be improved continuously through researches to analyze sediment a watershed outlet and to calculate R value using data of many rain stations.

Status of Sediment Dynamics in Lake Takkobu of the Kushiro Mire, Japan, Associated with Forestry and Agricultural Development in the Watershed (산림과 농업 개발로 인한 쿠시로습원 타호부호수의 최근 토사동태)

  • Ahn, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.755-763
    • /
    • 2010
  • Fine sediment loadings from agricultural watersheds have led to habitat degradation in Lake Takkobu, northern Japan. Fifteen lake sediment core samples were obtained and analyzed to develop a chronology using physical sediment characters, $^{137}Cs$, and tephra. The reconstructed sedimentation rates over the past ca 300 years suggested that sedimentation rates increased drastically after land use development. With a natural sedimentation rate of 0.1-1.1 mm $year^{-1}$ until 1898, lake sedimentation accelerated to 0.6-12.8 mm $year^{-1}$ after 1898. The sedimentation rates after land use change, such as forestry, river engineering works, and agricultural development, were about 6-12 times higher than that under natural conditions, leading to accelerated lake shallowing over the last ca 100 years. Sedimentation rates between 1898 and 1963 differed with location in the lake because of spatial variation in the sediment flux from the contributing rivers and their watersheds. The sedimentation rate in the southern zone between 1898 and 1963 was significantly higher than that in the middle and northern zones, reflecting active sediment production associated with forestry for charcoal production and canal construction for transportation in the southern watersheds and wetlands. The sedimentation rate after 1963 did not vary among the three zones, because decreasing sedimentation was found in most of the southern sites whereas an increasing trend was observed in the middle and northern sites. This result can be explained by shallowing of lake-bottom morphology with sedimentation and the resultant reduction of sediment retention capacity in the southern zone. Moreover, the sedimentation rate at sampling sites close to river mouths increased by 5-32 times compared with natural rates before 1898. The Kushiro River, into which Lake Takkobu drains under regular flow conditions, further contributed to an increased sedimentation rate, because water from the Kushiro River flows back into Lake Takkobu during floods.

Analysis of the Characteristics of Water Quality Difference Occurring between High Tide and Low Tide in Masan Bay (만조와 간조시 마산만 수질의 농도차 발생 특성의 분석)

  • Yoo, Youngjin;Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.102-113
    • /
    • 2019
  • Slack-tide sampling was carried out at 6 stations at high and low tide for a tidal cycle during spring tide of the early summer (June) and summer (July, August) of 2016 to determine the difference of water quality according to tide in Masan Bay, Korea. The mixing regime of all the water quality components investigated was well explained through the correlation with SAL. In the early summer and summer, TURB, DSi and NNN which mainly flow into the bay from the streams and SS, COD, AMN and $H_2S$ which mainly indicate the internal sink and source materials have a property of conservative mixing and non-conservative mixing, respectively. The conservative mixing showed a good linear relationship of the water quality between high and low tide, and the non-conservative mixing showed a variation of different pattern each other. Factor analysis performed on the concentration difference data sets between high and low tide helped in identifying the principal latent variables for them. In early summer, multiple effects (tidal action, natural influx and internal sinks and sources etc.) acted in combination for the differences to be distributed evenly in four factors (VF1~4), since there were few allochthonous inputs as a low-water season. On the contrary, in summer, the parameters showing large concentration difference at ST-1 affected by stream water were concentrated in one factor (VF1) and clearly distinguished from the parameters affected by the internal sinks and sources. In fact, there is no estuary (bay) that always maintains steady state flow conditions. The mixing regime of an estuary might be changed at any time due to the change of flushing time, and furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.