• Title/Summary/Keyword: 유압 제어

Search Result 662, Processing Time 0.029 seconds

Method for Reduction of Pressure Ripples using the Parallel Pipeline in Fluid Pipeline (분지를 이용한 유압관로계의 압력맥동 저감 방안)

  • 이규원;장주섭;김경훈;윤영환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.299-302
    • /
    • 1997
  • The pressure ripples are inevitabilitily generated by a fluctuation of flow rate caused pump mechanism, which occur noises, vibrations, and affect a control performance in tluid pipeline. The method for reduction of pressure ripples has been normally used a accumulator which is installed near the pump generating the pressure ripples. This paper introduces the parallel pipeline as a method to reduce pressure ripples in tluid pipeline, and confirms the usefulness of it in reducing the pressure ripples as compared with the fluid pipeline with a accumulator using AMESim(Advanced Modeling Environment for Simulations) Software.

  • PDF

Design and Assessments of a Closed-loop Hydraulic Energy-Regenerative System (폐루프 유압 에너지 회생 시스템에 관한 연구)

  • Hung, H.T.;Yoon, J.I.;Ahn, K.K.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.116-125
    • /
    • 2010
  • In this study, a novel hydraulic energy-regenerative system was presented from its proposal through its modeling to its control. The system was based on a closed-loop hydrostatic transmission and used a hydraulic accumulator as the energy storage system in a novel configuration to recover the kinetic energy without any reversion of the fluid flow. The displacement variation in the secondary unit was reduced, which widened the uses of several types of hydraulic pump/motors for the secondary unit. The proposed system was modeled based on its physical attributes. Simulation and experiments were performed to evaluate the validity of the employed mathematical model and the energy recovery potential of the system. The experimental results indicated that the round trip recovery efficiency varied from 22% to 59% for the test bench.

  • PDF

A Study of Hybrid Power System for Construction Machine (건설기계용 하이브리드 동력 시스템에 관한 연구)

  • Kim, Chong-Chul;Huh, Sung-Jae;Cho, Yu-Hwan;Lee, Byeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1136-1137
    • /
    • 2007
  • 현재 건설기계에 있어서 연비 절감에 대하여 유압 기기나 엔진의 에너지 손실 저감에 대한 대책이 있었으나 이것만으로는 한계가 있어 대폭적인 방안을 모색하는데 있어서 동력 시스템의 재검토가 필요한 시점이다. 더불어 자동차와 마찬가지로 건설기계에서도 배기가스 저감이나 연비 저감은 매우 중요한 과제이다. 그 해결책으로서 현재 자동차에서 개발된 하이브리드 시스템의 적용이 매우 유용하다 할 수 있다. 따라서 본 논문에서는 하이브리드 동력 시스템을 건설기계에 적용한 내용을 소개하고 있다. 건설기계의 하이브리드 동력 시스템을 구성하는 엔진, 발전기, 모터, 배터리, 커패시터 등의 전력전자 기기와 전동 유압을 구성하는 전동 유압 기기를 모델화 하여 하이브리드 동력 시스템을 적용한 건설기계의 기본적인 구조와 제어 성능을 파악하고 방식별 하이브리드 시스템의 성능을 비교하였다.

  • PDF

Active vibration isolation of a hydraulic system using the hetero-synaptic neural network (헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

Development of driving device by using proportional control valve (제어용 밸브를 이용한 동력전달계 개발)

  • HEO HYEUNG-SEOK;SUH YONG-KWEON;LEE SANG-BONG;SUH HO-JIN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.157-160
    • /
    • 2004
  • In this paper, a performance characteristic pump and motor is investigated. The hydraulic pump and motor are axial piston type with swash plate. Proportional control valve which can control that plate is an important component for its performance characteristics. We will show the control characteristics for them Experiment results show that behavior can be shown with changing the various parameters.

  • PDF

Design of Optimal Capacity Coefficients of Flow Control Valves in the Hoist Hydraulic System Using the Complex Method (콤플렉스법에 의한 호이스트 유압회로 유량제어밸브의 최적유량계수 설계)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, two pilot operated check valves, two flow control valves. The capacity coefficients of flow control valves should be adjusted for the hoist to operate at moderate speed and minimize the hydraulic energy loss. However, it is difficult to adjust the four capacity coefficients of flow control valves by trial and error for optimal operation. The steady state model of the hoist hydraulic system is derived and the optimal capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

Characteristics of Lightweight Hydraulic Directional Control Valve for Emergency Steering in Hybrid Electric Commercial Vehicles (하이브리드 상용차용 경량 비상조향장치 유압방향제어밸브의 성능특성 연구)

  • Park, Kyungmin
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.291-297
    • /
    • 2013
  • Hydraulic directional control valves actuated by solenoid are used to control emergency steering in general or hybrid electric commercial vehicles. In this study, a new lightweight hydraulic directional control valve was designed by flow and structural simulation, and was fabricated; the basic operation, pressure differentials, and inner leakage flow were evaluated experimentally. In the results, the new model showed comparable performance with an existing imported valve. New valve was 80% the weight of the existing valve and had few components. Installing this valve on a truck body is easier because of its compactness and small size.

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Error Evaluation of Linearized Equation for a Servovalve in Hydraulic Control Systems (유압 제어계에서 서보밸브 선형화 방정식의 오차 평가)

  • Kim, Tae-Hyung;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.779-788
    • /
    • 2003
  • This study evaluates the approximation errors of the existing linearized equation for a servovalve nonlinear flowrate characteristic. At first, the errors are evaluated on flowrate/pressure characteristics diagrams. Subsequently, they are investigated with time response simulation results for several hydraulic control systems. To enable systematic evaluation of computational error, the authors propose three kinds of equations with restructured forms of the existing linearized equation. As results of the evaluations, it is ascertained that comparatively good computational accuracy can be achieved with the existing linearized equation when both an operating point for the linearized equation and operating range of the hydraulic system stay near the flowrate axis of the flowrate/pressure characteristics diagram. In addition, the results show that comparatively big computational error may occur when operating range of a hydraulic system stay apart from the flowrate axis of the flowrate/pressure characteristics diagram.

A New Linearized Equation for Modelling a Servovalve in Hydraulic Control Systems (유압 제어계에서 서보밸브 모델링을 위한 새로운 선형화 방정식의 제안)

  • Kim, Tae-Hyung;Lee, Ill-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.789-797
    • /
    • 2003
  • In the procedure of the hydraulic control system design, a linearized approximate equation described by the first order terms of Taylor series has been widely used. Such a linearized equation is effective just near the operating point, However, pressure and flowrate in actual hydraulic systems are usually not confined near an operating point. This study suggests a new linearized flow equation for a servovalve as a modified form of the conventional linearized flow equation. Subsequently, a procedure to determine effective operating point for the new linearized equation is proposed. From the evaluations of time responses and frequency responses obtained from simulations for a hydraulic control system, the effectiveness of the new linearized equation and the procedure to determine effective operating point is confirmed.