• Title/Summary/Keyword: 유식물

Search Result 241, Processing Time 0.019 seconds

Effect of Lignans Isolated from Schisandra chinensis Baillon on Seed Germination and Seedling Growth in Radish (오미자 (Schisandra chinensis Baillon)로부터 순수분리한 리그난이 무의 종자발아 및 유묘생육에 미치는 영향)

  • Park, Da-Jung;Kim, Youn-Han;Park, Se-Jin;Rajasekar, Seetharaman;Park, Young-Hoon;Kang, Jum-Soon;Son, Beung-Gu;Lee, Yong-Jae;Kim, Sun-Tae;Yoon, Moo-Kyoung;Choi, Young-Whan
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.91-103
    • /
    • 2012
  • The aim of this study was to develop a rapid and cheap bioassay of four lignans (schisandrin, schisandrin C, the gomisin A and gomisin N) isolated from Schizandra chinensis Baill on seed germination and seedling growth of the radish. Its structure was determined by analysis of MS and NMR spectroscopic data. Radish seeds immersed for 1 hr in the solutions of $10^{-5}M$, $10^{-6}M$ and $10^{-7}M$ of schisandrin, schisandrin C, gomisin A, and gomisin N, seed germination was observed with in 60 hr after all of the treatments. Also, the seeds were germinated faster compared to untreated controls. At early germination stage, 48 hr after the treatment of the lignans, the suppression of germination was observed from all treatments; the suppression due to schisandrin and gomisin A was the highest at the concentration of $10^{-6}M$. The level of suppression increased as the concentration increased in the treatment of schisandrin C and gomisin N. Percent germination of seed after 184 hr was increased 90% at all treatments. For the effects of lignan treatment on seedling growth in radish, the growth of hypocotyl was promoted by gomisin A and gomisin N at all concentrations. Root elongation was significantly promoted by schisandrin and gomisin N at $10^{-5}M$ and $10^{-6}M$, respectively. Fresh and dry weights of the seedlings were high at a low concentration of $10^{-7}M$, but significantly reduced by schisandrin C at a high concentration of $10^{-5}M$. The results of the germination activity and seedling growth of the lignans from S. chinensis suggest their potential use as natural growth regulators.