• Title/Summary/Keyword: 유성기어박스

Search Result 17, Processing Time 0.026 seconds

풍력발전기 유성기어박스 고장 진단을 위한 신뢰성 기술

  • Yun, Byeong-Dong;Ha, Jong-Mun;Park, Jeong-Ho
    • Journal of the KSME
    • /
    • v.54 no.7
    • /
    • pp.51-55
    • /
    • 2014
  • 이 글에서는 풍력발전기 핵심부품인 유성기어박스의 구조 및 특징에 대해 알아본 후 고장 진단을 위해 어떤 기술들이 개발되었는지를 알아본다. 그리고 유성기어박스 고장 진단에 있어 예상되는 어려움과 그것을 해결하기 위한 고장 진단 기술 및 향후 연구 방향을 제시하고자 한다.

  • PDF

A Vibration-based Fault Diagnostics Technique for the Planetary Gearbox of Wind Turbines Considering Characteristics of Vibration Modulation (풍력발전기 유성기어박스의 진동 변조 특성을 고려한 진동기반 고장 진단 기법 고찰)

  • Ha, Jong M.;Park, Jungho;Oh, Hyunsoek;Youn, Byeng D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.665-671
    • /
    • 2015
  • The performance of fault diagnostics for a planetary gearbox depends on vibration modulation characteristics, which can vary with manufacturing & assembly tolerance, and load condition. In this paper, a fault diagnostics technique that considers vibration modulation characteristics is proposed for the effective fault detection of planetary gearboxes in wind turbines. For identifying the vibration modulation characteristics in practice, re-sampled vibration signals are processed with narrow band-pass filters. Thereafter, the optimal position of the vibration extraction window is identified for effective detection of faulty signals under the varying vibration modulation characteristics. The proposed diagnostics technique makes it possible to perform robust diagnostics of the planetary gearbox with regard to the changeable vibration modulation effect. For demonstrating the proposed fault diagnostics technique, a 2-kW WT testbed is designed with two DC motors and gearboxes. A faulty gear with partial tooth breakage is machined and assembled into the gearbox.

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

Planet Bearing Design of Slewing Planetary Gearbox (선회용 유성 기어박스의 유성기어 베어링 설계)

  • Park, Young-Jun;Lee, Geun-Ho;Song, Jin-Seop;Nam, Yong-Yun;Park, Sung-Ha
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.316-323
    • /
    • 2012
  • In order to meet the service life of planetary gearbox, a planet bearing, well known as the component with the highest failure rate, is designed. To predict the bearing fatigue life, ISO standard(ISO/TS 16281) is used, and the design parameters of the bearing are optimized using a parametric method. The whole planetary gearbox model is developed using a commercial software to calculate loads acting on planet bearings accurately. The results state that the designed bearings are satisfied with the life of 15,000hours, and the bearings that consist of 22rollers of 58mm have 1.6times longer life and better load sharing relatively than 22rollers of 28.5mm. Also, the increase in preload of taper roller bearings on the output pinion shaft prolongs the life of planet bearings regardless of roller's length.

Optimum Shape Design of Gearbox Housing for 5MW Wind Turbines (5MW급 풍력발전기용 기어박스 하우징의 형상 최적설계)

  • Jeong, Ki-Yong;Lee, Dae-Yeon;Choi, Eun-Ho;Cho, Jin-Rea;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • The thickness optimization of the gearbox housing for 5MW wind turbine is carried out with the help of the efficient structure analysis model and the approximation model of objective function. Wind turbine gearbox is a complex structural system composed of a number of gear trains, shafts, bearing and gearbox housing, requiring a tremendous number of elements for the structural analysis and design. In this paper, an effective analysis and design model considering the tooth stiffness of helical gears is proposed. It enables to significantly reduce the total element number and the analysis time. Through the numerical optimization of housing thickness making use of the effective gearbox model and the approximate model of objective function, the total weight of the gearbox housing is minimized. It has been observed from the numerical experiment that the approximation model is reliable and the optimization result is acceptable and verified analysis.

A Study on the Vibrational Characteristics of a Foot Mount Type Gearbox for Epicyclic Gear Train (바닥고정형 유성기어박스의 진동특성에 관한 연구)

  • Lee, Dong-Hwan;Yun, In-Seong;Cheon, Gil-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2619-2627
    • /
    • 2000
  • In this paper, the vibrational characteristics of a foot mount type gearbox for epicyclic gear train have been studied. The modal parameters and mode shapes of a gearbox have been computed using AN SYS code. Modal testing was carried out to verify the FEM analysis model. It has been shown that the analysis results are in good agreements with the experimental results. Harmonic analysis has been executed to verify the effect of thickness variance of gearbox housing on the modal response. Analyzing the calculated results, some guides for optimal vibration response has been deduced.

A Study on the Vibrational Characteristics of a Gearbox for Epicyclic Gear Train (유성기어박스의 진동특성에 관한 연구)

  • Lee, Dong-Hwan;Youn, In-Seong;Cheon, Gill-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.837-842
    • /
    • 2000
  • In this Paper, the vibrational characteristics of a gearbox for epicyclic Rear train have been studied The modal parameters and mode shapes of a gearbox have been computed using ANSYS code. Modal testing was carried out to verity the FEM analysis model. It has been shown that the analysis results are m good agreements with the experimental results. Harmonic analysis has been executed to verify the effect of thickness variance of gearbox housing on the modal response. Analyzing the calculated results, some guides fer optimal vibration response has been deduced.

  • PDF

Development of Normal-Opposite Rotational Durability Test Equipment for Large Sized Planetary Gear Box (대형 유성기어박스의 정역회전 내구성시험장치 개발에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.305-310
    • /
    • 2012
  • Planetary gear box is a power transmitter having very high gear ratio in compact volume. The planetary step-down gear box converts high speed and low torque into low speed and high torque, which is widely used in constructional and industrial machinery field. And, the planetary step-up gear box does vice versa working, which is used as main gear box of large sized wind mill system. The large sized planetary gear box must be performed the normal-opposite rotation test as a its durability test for achieving the reliability. The large sized planetary gear box is composed by triple gear trains of sun gear, carrier, and ring gear. If input power is supplied into one of them and the other is fixed, and then another becomes the output part. In this paper, we designed a new test equipment which can do rapid normal and opposite rotational change with only small displacement by supplying test power using the above rotation (driving) characteristics and hydraulic cylinder and link, and also compared and analyzed with existing method through various experiments.

Vibration characteristics of power differential gear train for 2.5MW wind turbine (2.5MW 풍력발전기 동력분기식 기어트레인의 진동특성)

  • Kim, Jung Su;Park, No Gill;Lee, Hyoung Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.253-261
    • /
    • 2014
  • In this paper, vibration analysis of power differential gear train for 2.5MW wind turbine system is analyzed. which system is composed of two planetary gear set, one helical gear set and main shaft that connected by flange. Planetary gear set, helical gear set, main shaft are modeled in MASTA program and housing, torque arm, carrier, flange components are modeling by finite element method. Each models are combined by component mode superposition. To analysis of natural vibration characteristic about 2.5MW wind turbine gear train was performed and check about critical speed with wind load, mass unbalance, angle misalignment excitation frequency.