• Title/Summary/Keyword: 유선곡률해석법

Search Result 4, Processing Time 0.02 seconds

A Study on the Through-Flow Analysis for a Multi-Stage Axial Turbine Considering Leakage Flows (누설 유동을 고려한 다단 축류 터빈의 유선곡률해석법에 대한 연구)

  • Kim, Sangjo;Kim, Kuisoon;Son, Changmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • The streamline curvature method is essentially used for the design procedure of multi-stage axial turbines. Moreover, by using this method, it is possible to consider the turbine loss characteristics for real operating conditions at an early design stage. However, there is not enough relevant research in South Korea to support this. In the present study, the streamline curvature method and the empirical equation for calculating the mixing loss are employed to predict the performance of a multi-stage axial turbine with leakage flows. The proposed method is applied to the prediction of the performance of a five-stage axial turbine with leakage flows, as used for an industrial gas turbine of 86 MW in South Korea. The calculation result is compared with 3D CFD data, and the advantages and limitations of the streamline curvature method are described.

Throughflow Analysis of Axial Flow Turbines - Comparison of Multi-streamline and Mean Line Methods - (축류터빈의 관통유동해석 - 다유선해석과 평균반경해석의 비교분석 -)

  • Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1173-1182
    • /
    • 1998
  • A throughflow analysis program for axial flow turbines is constructed, which can handle not only the two-dimensional multi-streamline (streamline curvature) method but also the one-dimensional mean line method. Calculations are performed for single stage and multi-stage axial flowturbines. For a wide operating range, the performance and flow field calculated by the present streamline curvature method are close enough to the test data. It is also revealed for the single stage turbine that the present analysis leads to far better correspondence with the experiment than other researchers" throughflow analyses. A special focus is put on the comparison of the results between the streamline curvature analysis and the mean line analysis. It is found that the mean line analysis can not predict the performance for highly off-designed conditions as accurately as the streamline curvature method, which shows the importance of considering the spanwise variation of loss and flow.

Numerical Calculation of Flows through Impeller of Centrifugal Compressors by Streamline Curvature Method (유선곡률법에 의한 원심압축기 회전차 내부유동의 수치해석)

  • Kang, S.H.;Shin, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.87-96
    • /
    • 1989
  • Flows through impellers of centrifugal compressors are calculated by a streamline curvature method. A method for the exit boundary condition is suggested in the present paper. Flow angles are assumed to be deviated from the blade angle parabolically. The maximum deviation is adjusted for the whole angular momentum to balance with the empirically estimated value by using Stanitz' slip-factor. The present method is verified to reasonably simulate flows through the impeller, when the 3-dimensionality of the flow is not strong. It is also shown that the method can be applied for the design of the splitter in the impeller.

  • PDF

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.