• 제목/요약/키워드: 유사 헤시안

검색결과 2건 처리시간 0.143초

로그 목적함수의 유사 헤시안을 이용한 라플라스 영역 파형 역산과 레벤버그-마쿼트 알고리듬 (Laplace-domain Waveform Inversion using the Pseudo-Hessian of the Logarithmic Objective Function and the Levenberg-Marquardt Algorithm)

  • 하완수
    • 지구물리와물리탐사
    • /
    • 제22권4호
    • /
    • pp.195-201
    • /
    • 2019
  • 파형 역산에 사용하는 로그 목적함수는 관측 자료와 모델링 자료의 로그값의 차이를 최소화하는 목적함수이다. 라플라스 영역 파형 역산에서는 주로 로그 목적함수와 유사 헤시안의 대각 성분을 이용하여 최적화를 수행한다. 이 때 유사 헤시안의 대각 성분이 0 또는 0에 가까운 값이 되는 것을 막기 위해 레벤버그-마쿼트 알고리듬을 적용한다. 본 연구에서는 로그 목적함수의 유사 헤시안의 대각 성분을 분석하여 음향파 라플라스 영역 파형 역산에서는 유사 헤시안의 대각 성분이 0 또는 0에 가까운 값을 가지지 않음을 보였다. 따라서 로그 목적함수의 유사 헤시안을 이용한 경사 방향 정규화시 레벤버그-마쿼트 알고리듬을 적용할 필요가 없다. 수치 예제에서 인공합성 자료와 현장 자료를 이용해 레벤버그-마쿼트 기법 없이도 역산 결과를 얻을 수 있음을 보였다.

드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(3) - 트루 뉴턴법을 위한 정식화 개발 및 유체의 3차원 최적 엑티브 제어 (Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(3) -Construction of the Formulation for True Newton Method and Application to Viscous Drag Reduction of Three-Dimensional Flow)

  • 박재형
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.751-759
    • /
    • 2007
  • 저자는 기존의 연구에서 대용량-비선형성을 가지는 유체의 최적화를 수행하기 위해 몇 가지 강력한 방법들을 제시한 바 있다. 즉, 최적화 과정에서 수렴성을 높이기 위해 step by step기법을 사용하였고, 또한 수렴속도를 높이기 위하여 최적화이터레이션 과정에서 얻어지는 민감도정보를 이용하여 시스템 평형방정식의 해석을 위한 좋은 초기치를 제공하는 방법과, 평형방정식을 구속조건으로 사용하는 동시기법(simultaneous technique)에서 착안하여 해석과 최적화 수렴 판정치를 조작하는 방법을 제시한 바 있다. 그러나 그들 기법은 기본적으로 유사뉴턴법에 기본을 두고 있다. 현재까지 최적화에서 SQP기법을 사용할 때는 정확한 헤시안 매트릭스의 유도가 매우 까다롭고 힘들기 때문에 유사뉴턴법을 사용하고 있는 실정이다. 그러나 3차원 문제와 같이 더욱 큰 용량의 문제를 위해서는 진정한 의미에서의 뉴턴법, 트루 뉴턴법(true Newton method)을 사용할 필요가 있다. 본 연구에서는 트루 뉴턴법을 사용하기 위해 헤시안 매트릭스의 정확치를 얻는 과정을 유도하고 이를 기본으로 트루 뉴턴법을 이용한 최적화 루틴을 만들었다. 그리고 이를 3차원 문제에 적용하여 그 효과를 검증하였다.