오늘날 웹의 비약적인 성장으로 텍스트, 이미지, 비디오, 그리고 사운드 등의 다양한 데이터 형식의 많은 정보가 축적되었으며 날마다 늘어나고 있다. 이들 정보의 효율적 검색을 위해 많은 연구가 이루어졌으며, 특히 텍스트 문서의 효율적인 검색을 위해 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터 유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등이 제안되었다. 그러나 이러한 기존의 방법들은 문서의 특징을 정확하게 반영할 수 없고, 의미적 검색이 이루어지지 않는 단점을 가지고 있다. 이에 본 논문은 문서를 미리 분류하는 기존의 방법을 개선하기 위해, 사용자가 원하는 문서와 비슷한 문서를 의미적으로 찾아내기 위한 방법을 제안한다. 본 방법론은 문서의 내용을 의미적인 계층으로 표현하고 중요 도메인에 가중치를 두어 각 문서들의 계층들의 도메인 비중과 도메인 내의 개념 일치도를 이용하여 문서들 간에 유사도를 구한다.
감성 지능형 컴퓨팅은 컴퓨터가 학습과 적응을 통하여 인간의 감성을 처리할 수 있는 감성인지 능력을 갖는 것으로 보다 효율적인 인간과 컴퓨터의 상호 작용을 가능하게 한다. 감성 정보들 중 시각과 청각 정보인 음악 이미지는 짧은 시간에 형성되고 기억에 오랫동안 지속되기 때문에 성공적인 마케팅에 있어서 중요한 요인으로 꼽히고 있으며, 인간의 정서를 이해하고 해석하는데 있어서 매우 중요한 역할을 한다. 본 논문에서는 사용자의 감성키워드(짜증, 우울, 차분, 기쁨)를 고려하여 매칭된 음악과 이미지를 검색하는 시스템을 구축하였다. 제안된 시스템은 인간의 감성을 4단계 경우로 상황을 정의하며, 정규화 된 음악과 이미지를 검색하기 위해 음악 이미지 온톨로지와 감성 온톨로지를 사용하였으며, 이미지의 특징정보를 추출, 유사성을 측정하여 원하는 결과를 얻게 하도록 하였다. 또한, 이미지 감성인식정보를 분류하기위해 대응일치분석과 요인분석을 통한 성컬러와 감성어휘를 하나의 공간에 매칭하였다. 실험결과 제안된 시스템은 4가지 감성상태에 대해 82.4%의 매칭율를 가져올 수 있었다.
소셜 미디어에서 일반적으로 게시물을 올릴 때 이미지의 태그 정보를 사용하는데, 태그를 이용하여 주로 검색이 이루어지기 때문이다. 사용자는 태그를 게시물에 붙임으로써 게시물을 많은 사람들에게 노출시키길 원한다. 또한, 사용자는 게시물과 함께 태깅될 태그를 붙이는 행위를 번거롭게 여겨 태깅하지 않은 게시물도 올리게 된다. 본 논문에서는 입력 이미지와 유사한 이미지를 찾아 해당 이미지에 부착된 레이블을 추출하여 그 레이블이 태그로 존재하는 인스타그램의 게시물들을 찾아 게시물 속 존재하는 다른 태그들을 추천해주는 방법을 제안한다. 제안하는 방법에서는 CNN(Convolutional Neural Network) 딥러닝 기법의 모델을 통하여 이미지로 부터 레이블을 추출하여 추출된 레이블로 인스타그램을 크롤링하여 레이블 외의 태그를 정렬하여 추천해준다. 추천된 태그를 이용하여 이미지를 게시하기도 편해지고, 검색의 노출을 높일 수 있고, 검색오류가 적어 높은 정확도를 도출할 수 있음을 알 수 있다.
다양한 디지털 기기 활용의 증가로 인해 멀티미디어 데이터가 증가됨에 따라 내용 기반으로 검색하는 기술이 연구되고 있다. 내용 기반 검색을 위해 멀티미디어에서 추출된 고차원 특징 벡터가 대용량이 되면서 고차원 데이터를 분산해서 관리하는 색인 기법이 필요하다. 본 논문에서는 대용량 멀티미디어 데이터에서 유사한 이미지를 검출하기 위한 분산 고차원 색인 기법을 제안한다. 제안하는 기법은 마스터/슬레이브 구조로 되어 있다. 마스터 서버의 색인 구조는 그리드 방식을 사용하여 검색 요청 시 탐색하는 노드를 감소시킨다. 슬레이브 서버의 색인 구조는 구 형태로 색인하여 범위 질의와 최근접 질의를 효율적으로 검색한다.
본 논문에서는 클립아트 이미지에서 모양 정보를 추출하고 이 정보를 이용하여 클립아트 이미지의 유사도를 측정하는 방법을 제안하였다. 본 논문에서 사용하는 클립아트 이미지는 자연영상에 비해 외곽선을 명확하게 추출할 수 있다는 장점이 있다. 이미지에서 모양 정보를 추출하는 이전의 방법은 모양의 외곽선을 이용하는 것과 영역을 이용하는 것으로 분류할 수 있는데 본 논문에서는 모양의 외곽선을 이용하는 것으로 외곽선의 오목한 부분과 볼록한 부분을 직사각형의 비율로 표현하는 방식을 제안하였다. 이렇게 함으로서 기존의 외곽선 기반 특징을 이용하는 방식보다 모양 정보를 더욱 잘 표현할 수 있었다.
비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색 기법과 최적 비교 영역 추출을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 제안한다.
캐리커처 생성 시스템은 입력된 인물 사진을 세그먼테이션을 통하여 특징(이목구비)을 추출하고, 추출된 특징정보를 이용하여 그와 유사한 특징정보를 가지는 캐리커처 이미지를 검색하여 매핑시키는 시스템이다. 캐리커처 생성 시스템에서는 얼굴의 대칭 구조를 이용하고 색상과 모양에 대한 정보를 이용하여 얼굴 각각의 특징(이목구비)을 캐리커처의 특징을 구분하는 특징정보로써 활용한다. 본 논문은 인물 사진을 세그멘테이션 처리하여 얻은 부분 영역 특징정보를 이용하여 그와 유사한 캐리커처를 자동으로 생성하는데 목적이 있다. 이 때 사용하는 대칭 구조는 씨앗 픽셀(seed pixel)을 추출한다. 특징정보는 색상의 경우 지역적인 색상정보는 이목구비를 더 뚜렷이 해주고, 전체적인 색상정보는 그 이미지의 피부색의 정보를 나타낸다. 모양의 경우 이목구비의 특징정보를 위해 불변모멘트가 주요하게 사용된다. 또한 데이터베이스는 얼굴의 세부사항(이목구비)에 대한 각각의 캐리커처로 구축되어 있고, 각 세부사항은 특징별 분류되어 있어야 한다. 이런 데이터베이스의 캐리커처와 추출된 얼굴 영상에서의 세부사항을 비교하여 유사도를 계산하고 이를 매핑하므로 개인의 특징을 가진 캐리커처를 자동으로 생성한다.
본 논문에서는 MPEG 비디오 스트림을 분석하여 DCT DC 계수를 추출하고 이들로 구성된 DC 이미지로부터 제안하는 robust feature를 이용하여 shot을 구하고 각 feature들의 통계적 특성을 이용하여 스트림의 특징에 따라 weight를 부가하여 구해진 characterizing value의 시간변화량을 구한다. 구해진 변화량의 local maxima와 local minima는 MPEG 비디오 스트림에서 각각 가장 특징적인 frame과 평균적인 frame을 나타낸다. 이 순간의 frame을 구함으로서 효과적이고 빠른 시간 내에 key frame을 추출한다. 추출되어진 key frame에 대하여 원영상을 복원한 후, 색인을 위하여 다수의 parameter를 구하고 사용자가 질의한 영상에 대해서 이들 파라메터를 구하여 key frame들과 가장 유사한 대표영상들을 검색한다.
본 논문에서는 Bipartite 매칭을 이용한 2D/3D 검색 시스템을 제안한다. 2D/3D 검색 시스템에서 3D 물체 사이의 유사도는 각각의 2D 실루엣 이미지들간의 매칭을 통해 얻어진다. 그러나 기존의 매칭 방법은 전체 매칭(Fuii MatchinE) 방법으로 연산량이 많기 때문에 Bipartite 매칭 방법을 사용하여 연산량을 줄이고 검색 속도의 성능을 향상시킨다. 기존의 방법과 제안된 방법의 검색 속도 비교를 통해 Bipartite 매칭을 이용한 2D/3D 검색 시스템의 효율성을 나타낸다.
최근 다양하고 방대한 멀티미디어 데이터를 효율적으로 저장, 관리 및 검색할 수 있는 멀티미디어 데이터베이스 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 내용 기반 이미지 검색을 위해 본 논문에서는 웨이브렛 변환과 에너지 값을 사용하여 이미지 데이터로부터 특징 벡터를 완전 자동으로 추출하는 방법과 이를 이용한 효율적인 검색 기법을 제안한다. 웨이브렛 변환은 이미지 압축이나 신호 분석 등에서 많이 사용되며, 특히 웨이브렛 계수 값은 영상의 특성을 잘 반영하고 웨이브렛 영역에서 계산되는 예제영상(Query image)과 데이터베이스에 저장된 영상간의 유사성을 추정하는데 더 효율적이다. 영상 검색에 있어, 특징 벡터로 사용되는 표준편차와 평균 값을 에너지 값과 비교 분석하였다. 실험결과, 표준편차나 평균 값을 이용하는 것보다 에너지 값을 사용하는 것이 더 효과적이었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.