• 제목/요약/키워드: 유사 문서

검색결과 701건 처리시간 0.025초

Word2Vec을 이용한 웹 문서 클러스터링 시스템 구현 (Implementation of a Web Document Clustering System Using Word2Vec)

  • 이현석;안성훈;이용환;천명재;박혁주;박미화;이용규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.26-29
    • /
    • 2016
  • 웹 문서 추천 시스템에서는 유사한 내용의 문서임에도 불구하고 URL이 달라서 다른 문서로 인식하여 사용자에게 추천하는 데이터 희소성 문제가 있다. 여기서 기존 연구들은 이 문제에 대한 해결 방법으로 TF-IDF를 이용하였으나 비용 및 시간의 한계가 있으며 유의어 분류 문제가 있다. 본 논문에서는 Word2Vec을 이용한 웹문서 학습 시스템을 통해 문제를 해결한다. 제안 시스템은 언론사의 뉴스를 수집하고 이를 정형화된 형식으로 분석하여 가공하는 전처리 과정을 거친 후 Word2Vec 학습을 통해 문서 벡터를 생성하고 이를 K-Means 클러스터링으로 유사 문서군으로 분류한다. 이 시스템을 이용하면 데이터 희소성 문제를 해결할 뿐만 아니라 연산량이 TF-IDF에 비해 줄어들고 유의어 분류 시 유사도가 높아지는 강점이 있다.

트리 구조로 된 강의노트 사이의 유사도 측정 기법 (Measuring Similarity Between Lecture Notes Based on Tree Structure)

  • 임선규;김명호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.25-28
    • /
    • 2011
  • 본 논문에서는 강의노트의 저장 형식이 XML 문서라는 사실을 기반으로 강의노트 사이의 유사도 계산 문제를 XML 문서 사이의 유사도 계산 문제로 치환해 해결한다. 그리고 유사도를 계산할 때 강의노트가 포함하는 컨텐츠의 논리적 구조의 특징을 반영한다. 본 논문에서 제안한 기법을 사용해 사용자가 소유한 강의노트와 유사한 강의노트들을 정확하게 검색함으로써 사용자가 효과적으로 강의노트를 학습할 수 있도록 도움을 줄 수 있다.

도합유사도를 이용한 한국어 문서요약 시스템 (A Korean Text Summarization System Using Aggregate Similarity)

  • 김재훈;김준홍
    • 인지과학
    • /
    • 제12권1_2호
    • /
    • pp.35-42
    • /
    • 2001
  • 본 논문에서 문서는 문서관계도라고 하는 가중치 그래프로 표현된다. 노드는 문서의 구성요소인 문장을 명사벡터로 표현하고, 링크는 노드들 간의 의미적인 관계를 표현하며 의미적 유사도를 가중치로 가지고 있다. 한 노드의 인접한 노드를 사이의 유사도 합을 도합유사도라고 하며, 이를 문서에서 문장의 중요도로 간주한다. 본 논문에서는도합유사도를 이용한 한국어 문서요약 시스템을 기술한다. 실험에 사용된 평가용 요약문서는 정보처리관련 분야에서 수집된 논문 100편과 KORDIC에서 구축한 신문기사 105건을 이용하였다. 문서요약 시스템에 의해서 생상된 요약문서와 크기가 본문의 20%이고 평가용 요약문서가 논문(서론과 결론)일 경우, 재현율과 정확률은 각각 46.6%와 76.9%를 보였으며, 또한 평가용 요약문서가 신문기사일 경우, 재현율과 정확률은 각각 30.5%과 42.3%를 보였다.

  • PDF

지능형 OMDR 기반의 자동 문서 공유 에이전트를 이용한 지식서비스 (A Knowledge Service Using Automatic Document Sharing based on Intelligent OMDR)

  • 김수경;최호진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.747-750
    • /
    • 2008
  • 본 연구는 온톨로지, 자연어 처리, 메타데이터 등의 시맨틱 웹 기반 기술들을 이용하여 시맨틱 웹 응용을 위한 전체적인 기술 적용과 그의 활용에 목적을 두고 있다. 이를 위해 OWL을 기반으로 조직이나 기관의 지식 주제별 도메인 온톨로지와, 기존 워드넷(WordNet)이나 더브린 코어 메타데이터(Dublin Core Meta Data)와 조직에 정의된 데이터베이스의 스키마를 MDR로 구축하여 상호 연결하여 온톨로지가 갖는 지능적 추론과 규칙 서비스와 표준화된 메타데이터의 결합 방법을 제공한다. 이는 기존에 온톨로지와 메타데이터의 재활용과 연결(Alignment)에 있어 연구적으로 높은 가치가 있다. 그리고 조직의 사용자가 문서를 작성할 때 문서의 내용에 대해 자연어 처리 기술과 온톨로지의 기술을 이용해 적합한 용어나 메타데이터를 자동으로 제공하여 작성된 문서의 공유와 재사용성을 높이고, 작성된 문서를 XML 형식으로 구성되는 XML 기반 지능 문서 데이터베이스(XMB Based Intelligent Document Database)에 저장하여 유사한 문서를 작성하거나 사용할 필요가 있는 사용자에게 문서 등록과 검색 에이전트(Document Registry and Retrieval Agent)를 통해 이러한 제공하여 문서 지식의 사유화를 최소화 하고, 유사 문서의 재작성과 또는 특정 문서의 작성에 필요한 시간이나 경비를 줄이게 된다. 또한 웹상이나 PDA 같은 개인 휴대장치를 통해서도 서 등록과 검색 에이전트를 통해 문서를 검색하고 사용할 수 있게 한다면 언제 어디서나 해당 서비스를 활용하는 유비쿼터스와 시맨틱 웹의 실질적 응용을 거둘 수도 있으리라 사료된다.

유사 적합성 피드백 기반의 문서 요약 기법을 이용한 효과적인 스니펫 생성 (An Effective Snippet Generation Method using Text Summarization Techniques based on Pseudo Relevance Feedback)

  • 안홍국;고영중;서정연
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.174-181
    • /
    • 2007
  • 정보 검색의 결과로 나타나는 요약문을 스니펫(snippet)이라 한다. 사용자는 자신이 원하는 정보를 얻기 위해 문서를 검색하는데, 이 때 스니펫은 사용자가 원하는 문서를 찾는데 중요한 역할을 한다. 본 논문에서는 정보검색 분야에서 높은 성능을 보이는 유사 적합성 피드백을 자동 문서 요약에 맞게 적용하여 높은 성능의 스니펫 생성 시스템을 구현한다. 우선, 사용자의 질의가 포함된 문장들을 일차적으로 요약 문장 후보로 추출한다. 그리고 추출된 문장 후보로부터 명사들을 질의 후보로 고려한다. 각 문장이 질의의 포함 여부에 따라 문장의 적합성을 판단하게 되고, 유사 적합성 피드백 확률 모델에 적용한 후 질의 후보들의 가중치를 추정하여 가중치 순위를 통해 확장할 질의들을 결정한다. 확장된 질의들과 기존의 질의들의 가중치를 합산하여 각 문장의 순위를 매기게 되고 가장 높은 순위의 문장들이 스니펫으로 제시된다. 논문에서 제안한 기법은 추가적인 핵심 질의들을 자동으로 확장하여 중요한 문장을 추출할 수 있다. 이 연구를 위해서 일반 상용 정보 검색 서비스에서 제공하는 스니펫을 수집하였고 이들의 정확도와 시스템의 정확도를 비교하였다. 실험 결과를 통해 살펴본 제안된 시스템의 성능은 상용 정보 검색기에서 제공되고 잇는 스니펫의 정확도 보다 우수한 성능을 보였다.

  • PDF

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법 (Similarity Measure and Clustering Technique for XML Documents by a Parent-Child Matrix)

  • 이윤구;김우생
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1599-1607
    • /
    • 2015
  • 최근 들어, 인터넷에서 자주 사용되는 XML 문서들에 대한 접근, 질의와 관리를 위한 효율적인 기법들이 연구 되어 왔다. 이 논문에서, 우리는 XML 문서를 효율적으로 군집화하기 위해 부모-자식 행렬 기법을 제안한다. 부모-자식 행렬은 XML 문서의 내용과 구조의 특징들을 분석한다. 부모-자식 행렬의 각 셀은 XML 트리 노드의 값이거나, 트리에서 부모-자식 관계가 존재할 때의 자식 노드의 값이 된다. 따라서 두 XML 문서의 유사도는 대응하는 부모-자식 행렬들의 유사도로 측정된다. 실험을 통해 우리가 제안하는 기법이 좋은 결과를 냄을 보였다.

문서 클러스터링에 의한 효율적인 병렬 정보검색 시스템 (An Efficient Parallel Information Retrieval System using Document Clustering)

  • 강유경;류광렬;정상화
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권2호
    • /
    • pp.157-167
    • /
    • 2001
  • 본 논문은 고품질의 정보를 신속하게 제공할 수 있으면서 가격대 성능비가 우수한 병렬 정보 검색 시스템을 제시하고 있다. 본 검색 시스템은 문서 라이브러리를 여러 개의 클러스터로 세분화하고 검색 시 클러스터 단위로 프로세서에 할당함으로써 작업 단위를 적절한 규모로 하였을 뿐만 아니라, 문서의 점수 계산 시 프로세서 간 통신이 전혀 필요치 않게 하였다. 검색은 1차로 클러스터 레벨에서 관련 클러스터들을 찾는 것으로 시작하여 2차로 관련 클러스터 내에서 실제 문서를 찾는 방식으로 이루어진다. 이러한 계층적인 검색 구조로 인하여 1차 검색 후 여과가 가능하므로 전체적인 검색의 부하를 줄일 수 있다. 또한 문서의 클러스터가 가능한 한 유사한 문서군이 되도록 함으로써 불필요한 클러스터가 검색될 가능성을 최소화하여 성능을 높였다. 본 검색 시스템은 분산메모리 MIMD 구조의 다중 트랜스퓨터 시스템에서 구현되었으며, 실험 결과 무작위적으로 클러스터링한 경우에 비해 유사 문서군으로 클러스터링한 접근 방법이 우수함을 확인하였다.

  • PDF

유사구조를 갖는 XML 문서의 재구성을 위한 점진적인 시스템 설계 (Design of an Incremental System for Reconstruction of Similar Structured XML Documents)

  • 설진안;정계동;최영근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (중)
    • /
    • pp.1031-1034
    • /
    • 2003
  • XML은 통합된 데이터 모델을 지원하기 위한 언어로, 특정 분야의 데이터에 대한 친환 및 통합의 필요성이 증대되어지고 있다. 일반적으로 데이터 교환은 다양한 공급자에 의해 독립적으로 운용 및 서비스됨으로서 개별적으로 데이터를 수집해야 하며 재배포 과정 또한 어렵다. 따라서 데이터 재배포 과정을 간소화하고 데이터 교환의 최적화를 위해 데이터 통합을 위한 재구성 방법이 필요하다. 본 논문에서는 특정 분야의 유사한 구조로 구성된 여러 문서를 입력받아 하나의 통합된 문서로 재구성할 수 있는 시스템을 제안한다. 제안된 시스템은 색인기법을 기반으로 추출된 정보를 하나의 문서로 매핑하기 위해 데이터 사전을 선계하고, 하나의 통합된 문서를 점진적인 과정을 통하여 재구성한다 따라서 재구성된 문서는 재배포 과정을 간소화할 수 있으며, 데이터 교환의 최적화는 물론 전자문서교환(EDI)에 있어서 정보교환 능력을 증가시킬 수 있다.

  • PDF

문서 클러스터링 정보를 이용한 컬렉션 융합 (Collection Fusion using Document Clustering)

  • 금기문;남세진;신동욱;김태균
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.147-149
    • /
    • 1998
  • 본 논문에서는 여러 정보검색 엔진들이 분산되어 있는 환경에서 이 엔진들의 검색 결과를 효과적으로 취합하여 사용자에게 제시하는 컬렉션 융합 방안을 제안하고자 한다. 이 방법은 우선 학습 질의어로 검색된 문서들의 클러스터링 정도를 이용하여 컬렉션에의 신뢰도를 측정하고 새로운 질의어가 입력되었을 때 각 컬렉션에서 검색된 문서의 유사도를 조정하여 융합하는 방법이다. 여기에서 각 컬렉션의 신뢰도는 미리 준비된 학습 질의어와 이 학습 질의어를 입력하여 검색된 문서들 사이의 유사도를 분석하여 측정한다. 이 신뢰도는 새로운 질의어가 입력되었을 때 각 컬렉션마다 문서들을 검색하고 이들 문서들을 어느 정도 신뢰할 것인가를 결정하는데 사용된다. 본 논문에서 제안한 방법은 학습과정에서 사람이 학습시킬 필요가 없는 비지도 학습에 기초하고 있다. 따라서 지금까지 지도 학습에 기초한 컬렉션 융합 방법과는 달리 인터넷과 같이 문서들이 동적으로 변하는 환경에서 쉽게 사용할 수 있다는 장점을 가진다.

  • PDF

향상된 지능형 테이블 검색 시스템의 개발 (Development of Advanced Intelligent Table Search System)

  • 한기준;김성찬;잉리우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.405-407
    • /
    • 2012
  • 학술 문서 내에서 테이블은 실험 결과, 정의, 요약하는 정보들을 함축하여 사용자에게 제공하는 역할을 한다. 즉 이러한 테이블을 학술 문서 내에서 탐색, 추출하여 검색에 이용하는 것은 학술 문서의 이해를 돕는 것과 더불어 학술 문서를 사용자가 직접 작성할 때에도 비슷한 형태의 테이블을 참조하여 형식에 맞는 테이블을 작성하는 데에 도움을 준다. 따라서 본 연구는 이러한 다양한 목적의 테이블 검색을 지원하기 위하여 문서로부터 자동으로 적합한 키워드를 추출하고 이를 통하여 문서와 유사한 테이블, 문서 내 테이블과 유사한 형식의 테이블을 검색하는 데 적합한 새로운 지능형 테이블 검색 시스템을 제안하며 이를 통해 기존에 존재하는 테이블 검색 시스템 알고리즘들과 성능 비교를 통해 향후 테이블 기반 검색 시스템 발전 가능성을 제시한다.