
Received 27 May 2015, Revised 19 June 2015, Accepted 30 June 2015
* Corresponding Author Woosaeng Kim(E-mail:kwsrain@kw.ac.kr, Tel:+82-2-940-5217)
Department of Computer Software, Kwangwoon University, Seoul, 139-701, Korea

Open Access http://dx.doi.org/10.6109/jkiice.2015.19.7.1599 print ISSN: 2234-4772 online ISSN: 2288-4165
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright Ⓒ The Korea Institute of Information and Communication Engineering.

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 7 : 1599~1607 Jul. 2015

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법

이윤구1 · 김우생2*

Similarity Measure and Clustering Technique for XML Documents by a
Parent-Child Matrix

Yun-Gu Lee1 · Woosaeng Kim2*

1Department of Computer Software, Kwangwoon University, Seoul 139-701, Korea
2*Department of Computer Software, Kwangwoon University, Seoul 139-701, Korea

요 약

최근 들어, 인터넷에서 자주 사용되는 XML 문서들에 대한 접근, 질의와 관리를 위한 효율적인 기법들이 연구 되

어 왔다. 이 논문에서, 우리는 XML 문서를 효율적으로 군집화하기 위해 부모-자식 행렬 기법을 제안한다. 부모-자식

행렬은 XML 문서의 내용과 구조의 특징들을 분석한다. 부모-자식 행렬의 각 셀은 XML 트리 노드의 값이거나, 트리

에서 부모-자식 관계가 존재할 때의 자식 노드의 값이 된다. 따라서 두 XML 문서의 유사도는 대응하는 부모-자식 행

렬들의 유사도로 측정된다. 실험을 통해 우리가 제안하는 기법이 좋은 결과를 냄을 보였다.

ABSTRACT

Recently, researches have been developing efficient techniques for accessing, querying, and managing XML
documents which are frequently used in the Internet. In this paper, we propose a parent-child matrix to cluster XML
documents efficiently. A parent-child matrix analyzes both the content and structural features of an XML document.
Each cell of a parent-child matrix has either the value of a node in an XML tree or the value of a child node, where a
parent-child relationship exists in the XML tree. Then, the similarity between two XML documents can be measured
by the similarity between two corresponding parent-child matrices. The experiment shows that our proposed method
has good performance.

키워드 : XML, 군집화, XML 유사도

Key word : XML, Clustering, XML Similarity

Journal of the Korea Institute of Information and
Communication Engineering

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 7 : 1599~1607 Jul. 2015

1600

Ⅰ. INTRODUCTION

As the Internet continues to grow and evolve, XML
has become the world’s most widely accepted data
representation and exchange format. An XML document
consists of a content and a structure, and in this way
differs from traditional data. This requires new effective
methods to process, organize, and retrieve the
semi-structural nature of XML data.

The general purpose of data clustering is to derive
some relevant information from the various data for
further data processing. The clustered data may show
some tendency or regularity in the data and may even
show some relevant knowledge worth noting. The
clustering of XML documents is to group similar
documents to facilitate searching because similar
documents can be searched and processed within a
specific category. The appropriate clustering of XML
documents is also effective for systematic document
management, data integration, XML retrieval, efficient
storage of XML documents, and even for system
protection purposes because unusual document can be
discovered easily. XML clustering methods can be
categorized into three main groups: methods based on
content, methods based on structure, and methods based
on both content and structure.

A nested structure of an XML document can be
modeled as an ordered labeled tree. An element and an
inclusion relationship of an XML document corresponds
to a node and a level of the corresponding tree,
respectively1). Therefore, we can find similar XML trees
corresponding to XML documents for clustering.
However, the difficult task is to find partially matched
sub-trees between XML trees. The studies to find
partially matched sub-trees between XML trees that have
been made so far are complex, and have an
overhead[1-3]. Thus, in this paper, we propose a
parent-child matrix to find both semantically and

structurally matched sub-trees between XML trees
efficiently. In fact, a parent-child matrix can represent
not only parent-child relationships but also ancestor-
descendant relationships between nodes in an XML tree.
Each cell of a parent-child matrix has either the value of a
node in an XML tree or the value of a child node, where a
parent-child relationship exists in the XML tree. Then,
the similarity between two XML documents can be
measured by the similarity between two corresponding
parent-child matrices. The experiment shows that the
clusters are formed well and efficiently when a
parent-child matrix is used to cluster XML documents.

The rest of the paper is organized as follows. The
related works are discussed in section 2. In section 3, we
propose a parent-child matrix method to cluster XML
documents. In section 4, we test and verify the
effectiveness of our algorithm with synthetic and real
data. Finally, we make a conclusion in section 5.

Ⅱ. RELATED WORKS

XML data can be represented using a common data
model such as rooted labeled trees, directed acyclic
graphs, or vector-based techniques for clustering. The
data models capture either content, structure, or content
and structural features of XML data, and it is the basis for
the identification of the features to be exploited in the
similarity computation. XML documents can be
represented as labeled trees. Several authors have
provided algorithms for computing the optimal edit
distance between two XML trees, which is the
generalization of the problem of computing the distance
between two strings[4]. In general, edit distance
measures the minimum number of node/sub-tree
insertions, deletions, and updates required to convert one
XML tree T1 into another XML tree T2. The distance
between T1 and T2 is then defined to be the cost of such a

1) In a tree representation, attributes are not distinguished from elements, both are mapped to the tag name set; thus, attributes are
handled as elements.

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법

1601

sequence[1-3, 5-9]. However, a clustering based on the
notion of edit distance between the tree representations of
an XML document is too costly to be practical. Thus, an
effective summarization, which can distinguish
documents among different clusters, would be highly
desirable. Based on this direction, Ref. [10] developed
the notion of the s-graph to represent XML data and
suggested a distance metric to perform clustering on
XML data. They have shown that the s-graph of an XML
document can be encoded by a cheap bit string, and
clustering can then be efficiently applied on the set of bit
strings for the whole document collection.

XML data can be represented as vectors in an
abstract n-dimensional feature space. A feature can be
either element, text, level, path, or any component of an
XML document/tree. Then, the feature vectors are
compared to find similar XML documents. Ref. [11]
applies a K-means clustering technique to XML
documents represented in a vector-space model. In this
representation, each document is represented by an
N-dimensional vector with N being the number of
document features such as text features, tag features,
and a combination of both in the collection. However,
they only consider the contents of XML. In Refs. [12,
13], a new bitmap indexing based technique to cluster
XML documents is described. A BitCube is presented as
a 3-dimensional bitmap index of triplets (document,
XML-element path, word). BitCube indexes can be
manipulated to partition documents into clusters by
exploiting bit-wise distance and popularity measures.
Ref. [14] devises features for XML data, focusing on
content information extracted from textual elements and
structural information derived from tag paths. They
introduce the notion of tree tuple in the definition of an
XML representation model that allows for mapping
XML document trees into transactional data, i.e.,
variable length sequences of objects with categorical
attributes. A partitional clustering approach has been
developed and applied to the XML transactional
domain. Ref. [15] transforms XML trees into vectors in
a high-dimensional Euclidean space based on the

occurrences of the features in the documents. Next, they
apply principal component analysis (PCA) to the matrix
to reduce its dimensionality. Finally, they use a
K-means algorithm to cluster the vectors residing in the
reduced dimensional space and place them in
appropriate categories. Refs. [16, 17] propose a method
to extract representative paths from the XML trees by
various pattern mining techniques. Then, the XML
documents are clustered by the path similarities.

Ⅲ. PARENT-CHILD MATRIX SIMILARITY

MEASURE FOR XML DOCUMENTS

The similarity between two XML documents can be
measured by their content and structure features. Let us
assume that Figs. 2(a), 2(b) and 2(c) are the
corresponding XML trees of the XML documents A1,
A2, and A3 generated by the Actor DTD of Fig. 1. Let us
also assume that Figs. 2(d) and 2(e) are the corresponding
XML tress of the XML documents M1 and M2 generated
by the Movie DTD of Fig. 1. These XML trees share the
nodes of a, b, c, and f, and they also share nodes b and c
as the child nodes of node a. In other words, they share
node f and a sub_tree rooted at the node a. Therefore, the
XML documents A1, A2, A3, M1, and M2 are similar to
each other.

 Actor Movie

<!ELEMENT a (b, c)> <!ELEMENT f (a, h?, i*)>
<!ELEMENT b (d*, e?, f?)> <!ELEMENT a (b, c)>
<!ELEMENT c (e?, f?, g?)> <!ELEMENT i (j)>
<!ELEMENT d (#PCDATA)> <!ELEMENT b (#PCDATA)>
<!ELEMENT e (#PCDATA)> <!ELEMENT c (#PCDATA)>
<!ELEMENT f (#PCDATA)> <!ELEMENT h (#PCDATA)>
<!ELEMENT g (#PCDATA)> <!ELEMENT j (#PCDATA)>

그림 1. Actor와 Movie DTD
Fig. 1 Actor and Movie DTD

We propose a parent-child matrix to represent this
kind of content and structural features of the XML trees
corresponding to the XML documents.

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 7 : 1599~1607 Jul. 2015

1602

 (a) A1 (b) A2 (c) A3 (d) M1 (e) M2

그림 2. XML 문서들 A1, A2, A3, M1, M2의 트리들

Fig. 2 Trees of the XML documents A1, A2, A3, M1,
and M2

 Both the vertical and horizontal axes of a
parent-child matrix represent all the distinct nodes in the
given XML trees. Each cell of a parent-child matrix has
either the value of a node in an XML tree or the value of
a child node, where a parent-child relationship exists in
the XML tree. However, XML documents can
encompass many optional and repeated elements. Thus,
the value of a node becomes the summation of each
node’s value when the nodes with the same name occur
multiple times in an XML tree in order to reflect
repetitions of elements in similarity measure.

Definition 1: A parent-child n×n matrix M for an
XML document with its corresponding XML tree T is
defined by i) Maa=∑ (a's value) if node a is in T, ii)
Mab=∑ (b's value) if a node b is a child of node a in T
where n is the total number of all the distinct nodes in
the given XML trees.

For example, when the value of each node is 1,
Tables 1 and 2 are the parent-child matrices of the XML
documents A1 and A2, respectively. Any parent-child
relationship between two nodes in an XML tree is
represented by a parent-child matrix. A parent-child
relationship between node a and node b of Fig. 2(b) can
be represented by the values of column a and column b
of the row a in Table 2. In fact, a parent-child matrix
can represent not only parent-child relationships but also
ancestor-descendant relationships. For example, the
ancestor-descendant relationships between node a and
node f of Fig. 2(b) is represented by both a parent-child
relationship between node a and node b, which in turn is
represented by the values of column a and column b of
the row a in Table 2 and a parent-child relationship
between node b and node f, which in turn is represented

by the values of column b and column f of the row b in
Table 2.

표 1. XML 문서 A1의 부모-자식 행렬

Table. 1 Parent-child Matrix of XML Document A1

a b c d e f g h i j
a 1 1 1
b 1 1 1
c 1 1
d 1
e 1
f 1
g
h
i
j

표 2. XML 문서 A2의 부모-자식 행렬

Table. 2 Parent-child Matrix of XML Document A2.

a b c d e f g h i j
a 1 1 1
b 1 1
c 1 1
d
e
f 1
g 1
h
i
j

A similarity between two XML documents can be
measured by the similarity between two corresponding
parent-child matrices. In this paper, when both the
corresponding cells between two parent-child matrices
have some value, we call those cells as a paired cell.
Then, the number of paired cells and the summation of
all the paired cells' values between A1 and A2 is 6 and
12, respectively, because Figs. 2(a) and 2(b) share the
nodes of a, b, c, and f, and they also share nodes b and c
as the child nodes of node a. In the same manner, the
number of paired cells and the summation of all the
paired cells' values between A1 and M1 is 6 and 12,
respectively. Therefore, the similarity between A1 and
A2 is the same as the similarity between A1 and M1.
However, in an XML tree, the closer to root node the

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법

1603

more important to XML tree in general. Therefore, we
can regard that the similarity between A1 and A2 is
greater than the similarity between A1 and M1. In order
to reflect this concept, it is necessary to give more
values to those nodes near the root of XML tree. In the
similar way, even though the summation of all the
paired cells' values between A1 and M1, and between A1
and M2 has the same value of 12, the similarity between
A1 and M1 is greater than the similarity between A1 and
M2, because the size of M1 is smaller than that of M2.
Therefore, it is necessary to give more values to those
nodes in a smaller size XML tree.

Definition 2. The similarity S between two XML
documents X1 and X2, whose corresponding parent-child
matrices are MX1 and MX2, is defined by

 ×∪
∩ (1)

where ∑SPC is the summation of all the paired cells'
values between MX1 and MX2, |MX1| is the number of
cells which has a value in MX1, |MX2| is the number of
cells which has a value in MX2, and |MX1∩MX2| is the
number of paired cells between MX1 and MX2.

For example, if we give a weighted value of 3, 2, and
1 to a node in the first, second, and third level of an
XML tree, respectively, table 3 shows the combination
of the five parent-child matrices for XML documents A1,
A2, A3, M1, and M2. In this case, the similarity between
A1 and A2 is 24×(6/20), because their total cells' number,
the paired cells' number and the summation of all the
paired cells' values is 20, 6 and 24, respectively. On the
other hand, the similarity between A1 and M1 is
21×(6/20) because their total cells' number, the paired
cells' number and the summation of all the paired cells'
values is 20, 6 and 21, respectively. Therefore, the
similarity between A1 and A2 is greater than the
similarity between A1 and M1. In the similar way, the
similarity between A1 and M1 is 21×(6/20) and the
similarity between A1 and M2 is 21×(6/22). Therefore,
the similarity between A1 and M1 is greater than the

similarity between A1 and M2. Since A2 and A3 have an
additional ancestor-descendant relationships between
node a and node f, their similarity has the largest value
25×(7/18).

표 3. XML 문서 A1, A2, A3, M1, M2. 부모-자식 행렬들의 결합

Table. 3 Combination of the Parent-child Matrices for
XML documents A1, A2, A3, M1, and M2

a b … i j
a (3,3,3,2,2) (2,2,2,1,1) …

b (2,2,2,1,1) …

c …

d …

e …

f (,,2,2) … (,,,,2)
g …

h …

i … (,,,,2) (,,,,1)
j … (,,,,1)

Ⅳ. CLUSTERING XML DOCUMENTS BY

PARENT-CHILD MATRIX

We use a hierarchical clustering algorithm to cluster
XML documents. The hierarchical clustering algorithms
produce a hierarchy of nested clustering. A clustering
ℜ1 containing k clusters is said to be nested in the
clustering ℜ2, which contains r (< k) clusters if each
cluster in ℜ1 is a proper subset of ℜ2. The hierarchical
clustering algorithms are classified into two groups
agglomerative and divisive in accordance with the
building up direction of the clusters. The pseudo code
of the general agglomerative clustering algorithm is
described in Fig. 3 when the total number of patterns
is n.

① Begin with n clusters, each consists of one pattern.
② Repeat step ③ a total of n-1 times.
③ Find the most similar clusters Ci and Cj and merge Ci and

Cj into one cluster.

그림 3. 응집형 군집화 알고리즘

Fig. 3 Agglomerative clustering algorithm

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 7 : 1599~1607 Jul. 2015

1604

Different agglomerative clustering algorithms are
obtained by using different methods to determine the
similarity of clusters. The single-linkage algorithm is
obtained by defining the distance between two clusters
to be the smallest distance between two patterns such
that one pattern is in each cluster. Therefore, if Ci and Cj
are clusters, the distance between them is defined as in

 min∈∈ (2)

where, d(X, Y) denotes the distance between the
samples X and Y. On the other hand, the
complete-linkage algorithm is obtained by defining the
distance between two clusters to be the largest distance
between a pattern in one cluster and a pattern in the
other cluster. Therefore, if Ci and Cj are clusters, the
distance between them is defined as in

 min∈∈  (3)

where, d(X, Y) denotes the distance between the
samples X and Y. One of the important issues for the
clustering process is how a similarity measure between
patterns is quantified. The most obvious measure of the
similarity (or dissimilarity) between two patterns is the
distance between them especially Euclidean distance.
Since we represent an XML document as a parent-child
matrix, Definition 2 is used as a similarity measure
between two XML documents. It is always possible to
represent an n×n parent-child matrix as a 1×n2
parent-child vector. Therefore, we will use a parent-child
vector in case of need. When Table 4 shows the
corresponding parent-child vectors for XML documents
A1, A2, A3, M1, and M2, the process of clustering by a
single-linkage algorithm is as follows. The most similar
two vectors in Table 4 are A2 and A3, because their
similarity has the largest value of 25×(7/18). Therefore,
we form {A2, A3} as the first cluster. In the similar way,
the most similar two vectors are A1 and A2, because their
similarity has the largest value of 24×(6/20). Therefore,
we form {A1,{A2,A3}} as the second cluster. In the
similar way, the most similar two vectors are {M1,M2}

because their similarity has the largest value of
22×(7/20). Therefore, we form {M1,M2} as the third
cluster. Finally, {{A1,{A2,A3}},{M1,M2}} is formed.
Therefore, when we have two clusters from five
documents with a hierarchical clustering technique, the
clusters are formed correctly as {A1,A2,A3} and
{M1,M2}.

표 4. XML 문서 A1, A2, A3, M1, M2의 부모-자식 행렬들

Table. 4 Parent-child vectors for XML documents A1,
A2, A3, M1, and M2

aa ab ac ad .. ba bb bc bd .. ji jj

A1 3 2 2 ... 2 1 ...

A2 3 2 2 ... 2 ...

A3 3 2 2 ... 2 ...

M1 2 1 1 ... 1 ... 1

M2 2 1 1 ... 1 ...

Input: X - the parent-child vectors for
 all the given XML documents
Output: Similarity - similarity between every two XML documents

 num=1;
 for i ← 1 to (docNum-1) do
 for j ← i+1 to docNum do
 cell1 ←0; cell2 ←0; pairedCell ←0; pairedCellSum ←0;
 for k ← 1 to (AllElement * AllElement) do
 if X(i,k)>0 then cell1 ← cell1+1;
 if X(j,k)>0 then cell2 ← cell2+1;
 if (X(i,k)>0) & (X(j,k)>0) then
 pairedCell ← pairedCell+1;
 pairedCellSum ← pairedCellSum+(X(i,k)+X(j,k));
 end
 end
 Similarity(num) ← pairedCellSum*(pairedCell/(cell1+cell2));
 num ← num+1;

 end
 end

그림 4. 유사도 계산 알고리즘

Fig. 4 Similarity calculation algorithm

A pseudo code of the algorithm for computing the
similarity among all the given XML documents is given
Fig. 4. The algorithm requires O(n2) for each
comparison, where n is the total number of distinct
elements of all the given XML documents.

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법

1605

Ⅴ. CLUSTERING EXPERIMENTS

We performed experiments on both synthetic and real
data sets. We generated the synthetic data using DTDs of
the XML data bank of the University of Wisconsin[18].
This data bank provides 8 DTDs, such as actor,
bibliography, club, department, movies, personal
information, company profiles, and stock quotes. A
parent-child vector for each XML document is used to
cluster XML documents. We give a weighted value of 5,
4, 3, 2, and 1 to a node in the first, second, third, fourth,
and the remaining levels of an XML tree, respectively.
Simple cardinality constraints can be imposed on the
elements using regular expression operators ?, +, or * in
DTD. As a result, algorithms for comparing XML
documents should be aware of such repetitions to
effectively assess structural similarity[1, 2]. We therefore
test our algorithm by controlling the sub-tree repetitions
in the XML tree. First, we restrict a special symbol such
as ?, +, or * in DTD, which occurs at most one time in the
generated XML document. Fig. 5 shows the dendrogram
when a single-linkage algorithm is applied. In Fig. 5, the
horizontal axis represents the XML documents and the
vertical axis represents the dissimilarity measure. We test
40 XML documents generated from 8 DTDs in order to
show the result in one diagram. All the XML documents
are numbered in order to observe the result easily: Actor
(1-5), Bibliography(6-10), Club(11-15), Department
(16-20), Movies(21-25), Personal(26-30), Profile
(31-35), and Stock(36-40). The diagram illustrates that
all the documents are clustered correctly. Department
documents are clustered first because they have the
greatest number of elements; on the other hand, Actor
documents are clustered last because they have the
smallest number of elements. The similarities among
Profile documents are the same because Profile DTD
does not have a special symbol, such as ?, +, or *. Among
the eight clusters, Department and Club documents are
clustered first because they share many nodes with the
same name such as name, phone, email, address,
lastname, and firstname. Fig. 6 shows the dendrogram

when a complete-linkage algorithm is applied to the same
XML documents. Fig. 6 illustrates that all the documents
are clustered correctly even though the sequence of the
clustering process is different from the case of a
single-linkage algorithm.

그림 5. 단일 연결 알고리즘에 의한 성장 그래프

Fig. 5 Dendrogram by single-linkage algorithm

그림 6. 완전 연결 알고리즘에 의한 성장 그래프

Fig. 6 Dendrogram by complete-linkage algorithm

Since Actor documents are clustered last because
they have the smallest number of elements, we
intentionally allow a special symbol such as ?, +, or * in
DTD to occur several times in the generated XML
document. As shown in Figs. 7 and 8, Actor documents
are clustered first because they have many repetitions of
elements, and even sub-tress.

For a real data set, we used XML data obtained from
the online XML version of the ACM SIGMOD
Record[19]. Specifically, we sampled 15 documents
randomly from each of the following DTDs: Index
TermsPage.dtd, OrdinaryIssuePage.dtd, and Proceedings
Page.dtd. Fig. 9 shows the dendrogram when an average-
linkage algorithm is applied.

한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 7 : 1599~1607 Jul. 2015

1606

그림 7. 단일 연결 알고리즘에 의한 성장 그래프

Fig. 7 Dendrogram by single-linkage algorithm

그림 8. 완전 연결 알고리즘에 의한 성장 그래프

Fig. 8 Dendrogram by complete-linkage algorithm.

그림 9. 평균 연결 알고리즘에 의한 성장 그래프

Fig. 9 Dendrogram by average-linkage algorithm

All the XML documents are numbered in order to
observe the result easily: IndexTermsPage(1-15),
OrdinaryIssuePage (16-30), and ProceedingsPage(31-
45). The diagram illustrates that all the documents are
clustered correctly. ProceedingsPage documents are
clustered first because they have the greatest number of
elements; on the other hand, IndexTermsPage documents
are clustered last because they have the smallest number
of elements. The similarities among the IndexTermsPage

documents or the OrdinaryIssuePage documents are
almost the same because their contents and size are
almost similar.

Ⅵ. CONCLUSION

An efficient clustering technique is required to
process XML documents which are popular on the
Internet for their data exchange format. Similar XML
documents can easily be found if we can find partially
matched sub-trees between the corresponding XML
trees. The previous methods to find partially matched
sub-trees between XML trees are complex and have an
overhead. We therefore propose a parent-child matrix
that represents not only a parent-child relationship but
also ancestor-descendant relationships between nodes in
XML trees. Since a parent-child matrix can find both
semantically and structurally matched sub-trees between
XML trees easily, it can cluster similar XML documents
efficiently. A hierarchical clustering algorithm with a
parent-child matrix is used to cluster XML documents.
The experiment shows that by our method, clusters are
formed correctly and efficiently.

ACKNOWLEDGMENTS

The present research has been conducted by
research grant of Kwangwoon University in 2015.

REFERENCES

[1] A. Nierman and H. V. Jagadish, "Evaluating structural
similarity in XML documents," Fifth International
Workshop on the Web and Databases, 2002.

[2] J. Tekli and R. Chbeir, "A novel XML document structure
comparison frmaework based-on sub-tree commonalities
and label semantics," Web Semantics: Science, Services

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법

1607

and Agents on the WWW, 2012.
[3] D. Brzezinski, A. Lesniewska, T. Morzy, and M. Piernik,

"XCleaner: A new method for clustering XML documents
by structure," Control and Cybernetics, 2011.

[4] R. Wanger and M. Fischer, "The String-to-String
Correction Problem," Journal of the ACM, 1974.

[5] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J.
Widom, "Change Detection in Hierarchically Structure
Information," in Proceedings of the ACM International
Conference on Management of Data, 1996.

[6] S. Chawathe, "Comparing Hierarchical Data in External
Memory," in Proceedings of International Conference on
Very Large Databases, 1999.

[7] J. Wang, K. Zhang, and D. Shasha, "A System for
Approximate Tree Matching," IEEE TKDE, 1994.

[8] A. Nierman and H. V. Jagadish, "Evaluating Structural
Similarity in XML Documents," in Proceedings of
International Workshop on the Web and Databases, 2002.

[9] T. Dalamagas, T. Cheng, K. J. Winkel, and T. Sellis, "A
Methodology for Clustering XML Documents by
Structure," Information Systems. In press, 2004.

[10] W. Lian, D. Cheung, N. Mamoulis, and S.-M. Yiu, “An
Efficient and Scalable Algorithm for Clustering XML
Documents by Structures,” TKDEE, 2004.

[11] A. Doucet and H. Ahonen-Myka, “Navie Clustering of a
Large XML Document Collection,” Proc. 1st Annual
Workshop of the Initiative for the Evaluation of XML

retrival(INEX), Germany, pp.81-88, Dec. 2002.
[12] J. Yoon, V. Raghavan, and V. Chakilam, “BitCube:

Clustering and Statistical Analysis for XML Documents,”
Proc. of the 13th Int. Conf. on Scientific and Statistical
Database Management, Fairfax, Virginia, July 2001.

[13] J. Yoon, V. Raghavan, V. Chakilam, and L. Kerschberg,
“BitCube: A 3-D Bitmap Indexing for XML Documents,”
Journal of Intelligent Information Systems, Vol. 17,
pp.241-254, November 2001.

[14] A. Tagarelli, and S. Greco, “Toward Semantic XML
Clustering,” 6th SIAM International Conference on Data
Mining (SDM ’06), Bethesda, Maryland, USA, pp. 188-
199, April 2006.

[15] J. Liu, Jason T., L. Wang, W. Hsu, and K. G. Herbert,
“XML Clustering by Principal Component Analysis,” Proc.
of the 26th IEEE International Conference on Tools with
Artificial Intelligence(ICTAI), 2004.

[16] J. Hwang, and K. Ryu, “XML Document Clustering Based
on Sequential Pattern,” Journal of Korea Information
Processing Society, Dec. 2003.

[17] I. Choi, B. Moon, and H.-J. Kim, "A clustering method
based on path similarities of XML data," Data &
Knowledge Engineering, 2007.

[18] http://research.cs.wisc.edu/niagara/data.html
[19] http://www.sigmod.org/publications/sigmod-record

/xml-edition.

이윤구(Yun-Gu Lee)

2000년 2월: 한국과학기술원 전기 및 전자공학과 졸업 (공학사)
2002년 2월: 한국과학기술원 전기 및 전자공학과 졸업 (공학석사)
2006년 8월: 한국과학기술원 전기 및 전자공학과 졸업 (공학박사)
2006년 9월 ~ 2013년 3월: 삼성전자 디지털 미디어 연구소 수석연구원
2013년 3월 ~ 현재: 광운대학교 컴퓨터 소프트웨어학과 부교수
※관심분야 : 영상 신호처리, 영상 시스템

김우생(Woosaeng Kim)

1985년 서울대 수료 및 텍사스 주립대학 전산학과 졸업 (학사)
1987년 미네소타 주립대학 전산학과 졸업 (석사)
1991년 미네소타 주립대학 전산학과 졸업 (박사)
1992년 - 현재: 광운대학교 컴퓨터 소프트웨어 학과 교수
관심분야: 데이터베이스, 멀티미디어

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

