인간형 로봇(Humanoid)은 인간과 유사한 구조를 갖고 있는 로봇으로, 이족 보행이 가능하고 양 손이 자유롭기 때문에 인간 생활 환경에 적용이 가능하다. 인간형 로봇은 이족 보행 로봇의 형태를 지니며 보통 20 자유도(DOF : Degree of freedom) 이상의 높은 자유도와 직렬형 링크 구조로 인해 로봇의 안정도를 해석하고 움직임을 제어하기가 어렵다. 이러한 이유로 이족 보행 로봇 동작의 안정도를 증가시키기 위해 로봇의 최적화된 동작 패턴 생성과 자세 제어 등이 연구 되고 있다. 본 논문에서는 범용 근사자의 특징을 갖는 신경망을 이용하여 이족 보행 로봇의 동작 패턴 생성 방법에 대하여 제안하였다. 실제로 계획된 동작을 토대로 6가지의 동작 패턴을 생성하였으며 컴퓨터 모의실험과 상용 이족 보행 로봇을 이용하여 생성된 동작 패턴의 안정도를 확인해보고 제안된 방법에 타당성을 검증하였다.
Park, Jin-Sung;Cho, Hwa-Hyun;Chae, Jong-Seok;Choi, Myung-Ryul
Proceedings of the KIEE Conference
/
1999.07g
/
pp.2974-2976
/
1999
본 논문에서는 단일패턴과 다중패턴 학습이 가능한 FNNs(Feedforward Neural Networks)을 하드웨어로 구현하는데 필요한 학습방안을 제안한다. 제안된 학습방안은 기존의 하드웨어 구현에 이용되는 방식과는 전혀 다른 방식이며, 오히려 기존의 소프트웨어 학습방식과 유사하다. 기존의 하드웨어 구현에서 사용되는 방법은 오프라인 학습이나 단일패턴 온 칩(on-chip) 학습방식인데 반해, 제안된 학습방식은 단일/다중패턴은 칩 학습방식으로 다층 FNNs 회로와 학습회로 사이에 스위칭 회로를 넣어 구현되었으며, FNNs의 학습회로는 선형 시냅스 회로와 선형 곱셈기 회로를 사용하여MEBP(Modified Error Back-Propagation) 학습규칙을 구현하였다. 제안된 방식은 기존의 CMOS 공정으로 구현되었고 HSPICE 회로 시뮬레이터로 그 동작을 검증하였다 구현된 FNNs은 어떤 학습패턴 쌍에 의해 유일하게 결정되는 출력 전압을 생성한다. 제안된 학습방안은 향후 학습 가능한 대용량 신경망의 구현에 매우 적합하리라 예상된다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.128-132
/
2002
한글 표기를 음가로 변환하는 규칙을 역으로 적용하여 음가를 한글 표기로 전환시키는 표준 규칙을 고안하는 것이 본 연구의 목표다. 이러한 표준 규칙은 음성인식에 반드시 필요한 귀중한 자료가 된다. 음성 인식은 표준으로 기록된 음성의 패턴과 입력을 비교하여 가장 유사한 패턴을 찾는 방법을 사용한다. 이때 표준 음성 패턴이 띄어쓰기 단위라면 수백만 개의 표준 패턴이 수록되어야 한다. 이렇게 하면 표준 패턴을 위한 데이터베이스도 너무 커지고 비교회수도 너무 많아져서 실용화가 불가능하다. 그래서, 음절단위로 인식하는 것이 바람직하다. 음절단위로 인식하면 인식된 음가가 한글 표기 문법에 맞지 않으므로, 인식 결과를 출력할 때에는 음가를 그대로 출력하는 것이 아니라 한글표기로 변환하여 표기해야 한다 이때, 본 연구의 연구 결과인 표준규칙을 사용한다.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.97-100
/
2007
본 논문에서는 다차원 파일구조를 주어진 질의 패턴에 의해 최적으로 구성할 수 있는 방법을 제시한다. 지금까지의 다차원 파일구조는 응용 시스템에서 주어지는 질의의 패턴을 고려하지 않고 다차원 파일구조를 구성하는 애트리뷰트들의 클러스터링 정도를 동일하게 취급하였다. 그러나 다차원 파일구조를 이용하는 대부분의 응용 시스템에서 구성 애트리뷰트들 사이의 액세스 정도를 크게 다르게 하는 질의 패턴을 보인다. 따라서 본 논문에서는 다차원 파일구조의 응용 시스템에서 주어지는 질의 정보를 이용하여 각 구성 애트리뷰트들 사이의 클러스터링 정도를 각각 다르게 반영함으로써 최적이 되는 다차원 파일구조를 구성하는 방안을 제시한다. 먼저 질의처리의 성능이 질의 패턴에 주어진 질의 영역의 모양과 다차원 파일구조의 도메인 공간의 분할 상태를 나타내는 페이지 영역의 모양 사이의 유사성에 따라 크게 영향 받음을 보이고, 이러한 특성을 이용하여 수학적 분석을 통하여 제안된 기법의 이론적인 배경을 증명한다.
Recently many LBS(Location Based Service) systems are issued in mobile computing systems. Spatial-Temporal Moving Sequence Pattern Mining is a new mining method that mines user moving patterns from user moving path histories in a sensor network environment. The frequent pattern mining is related to the items which customers buy. But on the other hand, our mining method concerns users' moving sequence paths. In this paper, we consider the sequence of moving paths so we handle the repetition of moving paths. Also, we consider the duration that user spends on the location. We proposed new Apriori_msp based on the Apriori algorithm and evaluated its performance results.
When scenes in the real world are perceived for the purpose of computer/robot vision fields, there are great deals of texture based patterns in them. This paper introduces a texture feature representation on a coordinate system in which many different patterns can be represented with a mathematical model (Gabor function). The representation of texture features of each pattern on the coordinate system results in the high performance/competence of texture pattern classification. A decision tree algorithm is used to classify pattern data represented on the proposed coordinate system. The experimental results for the texture pattern classification show that the proposed method is better than previous researches.
Sequential pattern mining is an important data mining task with broad applications. However, conventional methods may meet inherent difficulties in mining databases with long sequences and noise. They may generate a huge number of short and trivial patterns but fail to find interesting patterns shared by many sequences. In this paper, to overcome these problems, we propose the theme of approximate sequential pattern mining roughly defined as identifying patterns approximately shared by many sequences. The proposed method works in two steps: one is to cluster target sequences by their similarities and the other is to find consensus patterns that ire similar to the sequences in each cluster directly through multiple alignment. For this purpose, a novel structure called weighted sequence is presented to compress the alignment result, and the longest consensus pattern that represents each cluster is generated from its weighted sequence. Finally, the effectiveness of the proposed method is verified by a set of experiments.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
1998.04a
/
pp.198-204
/
1998
텍스쳐는 그 정의화 특징이 명확하지 않은 패턴이며, 무한한 변형에 따른 무한한 수의 텍스쳐가 존재한다. 이로 인해 사람의 텍스쳐 지각에 관한 연구에 어려움이 있다. 본 논문에서는 신경망으로 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각을 모의실험하였다. 쌍별비교와 비교판단법칙을 사용하여 사람이 지각하는 텍스쳐의 특징값과 텍스쳐간의 유사도 값을 구하였다. 구한 값을 바탕으로 신경망의 일종인 다층퍼셉트론을 사용하여 특징 추출기와 유사도 특정기를 구현하여 모의 실험하였다. 신경망을 사용하여 모의실험한 결과, 사람의 텍스쳐 특징 지각과 텍스쳐간의 유사도 지각과 유사한 결과를 얻었다. 이러한 실험결과는 신경망으로 구현된 시스템이 사람의 감성적인 수치를 구하는 방법으로 사용될 수 있음을 보여 준다.
Journal of the Korea Society of Computer and Information
/
v.12
no.6
/
pp.147-152
/
2007
Face detection is a crucial part of the face recognition system. It determines the performance of the whole recognition system. Hausdorff distance metric has been used in face detection and recognition with good results. It defines the distance metric based only on the geometric similarity between two sets or points. However, not only the geometry but also the local patterns around the points are available in most cases. In this paper a new Hausdorff distance measure is proposed that makes hybrid use of the similarity of the geometry and the local patterns around the points. Several experiments shows that the new method outperforms the conventional method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.16
no.5
/
pp.403-412
/
1991
This paper proposes a type of self organizing neural network which recognizes arbitrary symbols as well as numerical or alphabetic characters. The proposed algorithm autonomically organizes and classifies similar patterns on the basis of the distribution types of characteristics in the input images. Thus it can be appliced for the recognition of arbitrary images when it is difficult to establish a learning rule. It performs a stale recognition process with in the limit of the memory capacity. The cheme was applied and tested to 50 different image patterns with increased noise level up to 44%(SNR 2dB). The implementation results demonstrate that the proposed algorithm successfully recognizes the image patterns changed due to the various noise levels and thus proves excellent antinoise characteristics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.