• Title/Summary/Keyword: 유사정합

Search Result 279, Processing Time 0.023 seconds

To Evaluate the Accuracy of DEMs Derived from the Various Spectral Bands of Color Aerial Photos (컬러항공사진의 밴드별 수치표고모형 정확도 평가)

  • Kim, Jin-Kwang;Hwang, Chul-Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • In this study, Digital Elevation Models (DEMs) were constructed from color images, grayscale images and each bands (Red, Green, Blue) of color image, and the accuracies of each DEMs were evaluated, And then, correlation coefficients between left and right images of each stereopairs were analyzed. The DEM can be constructed conventionally from the digital map and stereopair images using image matching. The image matching requires stereo satellite images or aerial photographs. In case of rotor aerial photographs, these are to be scanned in 3 bands (Red, Green, Blue). For this study, 5 types of images were acquired; color, grayscale, RED band, GREEN band, and BLUE band image. DEMs were constructed from 5 types of stereopair images and evaluated using elevation points of digital maps. In order to analyze the cause of various accuracies of each DEMs, the similarity between left and right images of each stereopairs were analyzed. Consequently, the accuracy of the DEM constructed from RED band images of color aerial photograph were proved best.

Effective Reconstruction of Stereo Image through Regularized Adaptive Disparity Estimation Scheme (평활화된 적응적 변이추정 기법을 이용한 스테레오 영상의 효과적인 복원)

  • Kim, Yong-Ok;Bae, Kyung-Hoon;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.424-432
    • /
    • 2003
  • In this paper, an effective method of stereo image reconstruction through the regularized adaptive disparity estimation is proposed. Althougth the conventional adaptive disparity estimation method can sharply improve the PSNR of a reconstructed stereo image, but some problems of overlapping between the matching windows and disallocation of the matching windows can be occurred, because the matching window size changes adaptively in accordance with the magnitude of feature values. Accordingly, in thia paper, a new regularized adaptive disparity estimation technique is proposed. That is, by regularizing the estimated disparity vector with the neughboring disparity vectors, problems of the conventional adaptive disparity estimated scheme might be solved, and also the predicted stereo image can be more effectively reconstructed. From some experiments using the CCETT'S stereo image pairs of 'Man' and 'Claude', it is analyzed that the proposed disparity estimation scheme can improve PSNRs of the reconstructed images to 10.89dB, 6.13dB for 'Man' and 1.41dB, 0.81dB for 'Claude' by comparing with those of the conventional pixel-based and adaptive estimation method, respectively.

Searching Sequential Patterns by Approximation Algorithm (근사 알고리즘을 이용한 순차패턴 탐색)

  • Sarlsarbold, Garawagchaa;Hwang, Young-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.29-36
    • /
    • 2009
  • Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data mining problem with broad applications. Since a sequential pattern in DNA sequences can be a motif, we studied to find sequential patterns in DNA sequences. Most previously proposed mining algorithms follow the exact matching with a sequential pattern definition. They are not able to work in noisy environments and inaccurate data in practice. Theses problems occurs frequently in DNA sequences which is a biological data. We investigated approximate matching method to deal with those cases. Our idea is based on the observation that all occurrences of a frequent pattern can be classified into groups, which we call approximated pattern. The existing PrefixSpan algorithm can successfully find sequential patterns in a long sequence. We improved the PrefixSpan algorithm to find approximate sequential patterns. The experimental results showed that the number of repeats from the proposed method was 5 times more than that of PrefixSpan when the pattern length is 4.

Motion Vector Estimation using T-shape Diamond Search Algorithm (TDS 기법을 이용한 움직임 벡터 추정)

  • Kim, Ki-Young;Jung, Mi-Gyoung
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.309-316
    • /
    • 2004
  • In this paper, we proposed the TDS(T-shape Diamond Search) based on the directions of above, below, left and right points to estimate the motion vector fast and more correctly in this method, we exploit the facts that most motion vectors are enclosed in a circular region with a radius of 2 fixels around search center(0,0). At first, the 4 points in the above, below, left and right around the search center is calculated to decide the point of the MBD(Minimum Block Distortion). And then w. above point of the MBD is checked to calculate the SAD. If the SAD of the above point is less than the previous MBD, this process is repeated. Otherwise, the right and left points of MBD are calculated to decide The points that have the MBD between right point and left point. Above processes are repeated to the predicted direction for motion estimation. Especially, if the motions of image are concentrated in the crossing directions, the points of other directions are omitted. As a result, we can estimate motion vectors fast. Experiments show that the speedup improvement of the proposed algorithm over Diamond Search algorithm(DS) and HEXgon Based Search(HEXBS) can be up to 38∼50% while maintaining similar image Quality.

Rotational Prism Stitching Interferometer for High-resolution Surface Testing (고해상도 표면 측정을 위한 회전 프리즘 정합 간섭계)

  • In-Ung Song;Woo-Sung Kwon;Hagyong Khim;Yun-Woo Lee;Jong Ung Lee;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • The size of an optical surface can significantly affect the performance of an optical system, and high spatial frequency errors have a greater impact. Therefore, it is crucial to measure the surface figure error with high frequency. To address this, a new method called rotational prism stitching interferometer (RPSI) is proposed in this study. The RPSI is a type of stitching interferometer that enhances spatial resolution, but it differs from conventional stitching interferometers in that it does not require the movement of either the mirror tested or the interferometer itself to obtain sub-aperture interferograms. Instead, the RPSI uses a beam expander and a rotating Dove prism to select particular sub-apertures from the entire aperture. These sub-apertures are then stitched together to obtain a full-aperture result proportional to the square of the beam expander's magnification. The RPSI's effectiveness was demonstrated by measuring a 40 mm diameter spherical mirror using a three-magnification beam expander and comparing the results with those obtained from a commercial interferometer. The RPSI achieved surface testing results with nine times higher sampling density than the interferometer alone, with a small difference of approximately 1 nm RMS.

An Analysis on the Vision of Visual Landscape Planning in Korea (경관계획에서 제시된 경관 미래상의 현황 분석)

  • Joo, Shin-ha
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.80-92
    • /
    • 2016
  • The purpose of this study is to analyze the visions of visual landscape planning and to suggest improvements for it. This study overviews currents methods of making the vision of visual landscape planning by group interview with hands-on workers. Thirty-two cases of visual landscape planning are reviewed to analyze the forms and contents of vision of visual landscape planning. The purpose of urban vision and city slogans are fairly similar to the vision of visual landscape planning; therefore, this study reviews and compares them. According to this study, we conducted writing direction and policy implications. The results of this study are as follows. The vision of visual landscape planning is written by consulting the landscape resources survey and visions of upper plans. These writing methods are able to enhance the consistency of each chapter in visual landscape planning, and the consistency between visual landscape planning and upper plans. Thus, it is desirable to revise landscape planning guidelines with this method. The current vision of visual landscape planning is written in the form of a city slogan. But the vision of visual landscape planning is not a means of publicity and transformational use. So, the form of the vision needs to be revised. This study analyzed the correlation among the vision of visual landscape planning, urban vision, and city slogan. There is a closer correspondence between the vision of visual landscape planning and urban vision than city slogan. This result means that it is beneficial to write the vision of visual landscape planning in consideration of the upper plan. Henceforward, for maintaining and enhancing consistency detailed contents in landscape planning guidelines are needed.

A Motion Correspondence Algorithm based on Point Series Similarity (점 계열 유사도에 기반한 모션 대응 알고리즘)

  • Eom, Ki-Yeol;Jung, Jae-Young;Kim, Moon-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.305-310
    • /
    • 2010
  • In this paper, we propose a heuristic algorithm for motion correspondence based on a point series similarity. A point series is a sequence of points which are sorted in the ascending order of their x-coordinate values. The proposed algorithm clusters the points of a previous frame based on their local adjacency. For each group, we construct several potential point series by permuting the points in it, each of which is compared to the point series of the following frame in order to match the set of points through their similarity based on a proximity constraint. The longest common subsequence between two point series is used as global information to resolve the local ambiguity. Experimental results show an accuracy of more than 90% on two image sequences from the PETS 2009 and the CAVIAR data sets.

Construction of 2D Image Mosaics Using Quasi-feature Point (유사 특징점을 이용한 모자이킹 영상의 구성)

  • Kim, Dae-Hyeon;Choe, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.381-391
    • /
    • 2001
  • This paper presents an efficient approach to build an image mosaics from image sequences. Unlike general panoramic stitching methods, which usually require some geometrical feature points or solve the iterative nonlinear equations, our algorithm can directly recover the 8-parameter planar perspective transforms. We use four quasi-feature points in order to compute the projective transform between two images. This feature is based on the graylevel distribution and defined in the overlap area between two images. Therefore the proposed algorithm can reduce the total amount of the computation. We also present an algorithm lot efficiently matching the correspondence of the extracted feature. The proposed algorithm is applied to various images to estimate its performance and. the simulation results present that our algorithm can find the correct correspondence and build an image mosaics.

  • PDF

Automatic Face and Eyes Detection: A Scale and Rotation Invariant Approach based on Log-Polar Mapping (Log-Polar 사상의 크기와 회전 불변 특성을 이용한 얼굴과 눈 검출)

  • Choi, Il;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.88-100
    • /
    • 1999
  • Detecting human face and facial landmarks automatically in an image is as essential step to a fully automatic face recognition system. In this paper, we present a new approach to detect automatically face and its eyes of input image with scale and rotation variations of faces by using an intensity based template matching with a single log-polar face template. In a template-based matching it is necessary to normalize the scale changes and rotations of an input image to a template ones. The log-polar mapping which simulates space-variant human visual system converts scale changes and rotations of input image into constant horizontal and cyclic vertical shifts in the output plane. Intelligent use of this property allows us to shift of the candidate log-polar faces mapped at various fixation points of an input image to be matched to a template over the log-polar plane. Thus, the proposed method eliminates the need of adapting multitemplate and multiresolution schemes, which inevitably give rise to intensive computation involved to cope with scale and rotation variations of faces. Through this scale and rotation involved to cope with scale and method can lead to detecting face and its eyes simultaneously. Experimental results on a database of 795 images show over 98% detection rate.

  • PDF

Determination of Spatial Resolution to Improve GCP Chip Matching Performance for CAS-4 (농림위성용 GCP 칩 매칭 성능 향상을 위한 위성영상 공간해상도 결정)

  • Lee, YooJin;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1517-1526
    • /
    • 2021
  • With the recent global and domestic development of Earth observation satellites, the applications of satellite images have been widened. Research for improving the geometric accuracy of satellite images is being actively carried out. This paper studies the possibility of automated ground control point (GCP) generation for CAS-4 satellite, to be launched in 2025 with the capability of image acquisition at 5 m ground sampling distance (GSD). In particular, this paper focuses to check whether GCP chips with 25 cm GSD established for CAS-1 satellite images can be used for CAS-4 and to check whether optimalspatial resolution for matching between CAS-4 images and GCP chips can be determined to improve matching performance. Experiments were carried out using RapidEye images, which have similar GSD to CAS-4. Original satellite images were upsampled to make satellite images with smaller GSDs. At each GSD level, up-sampled satellite images were matched against GCP chips and precision sensor models were estimated. Results shows that the accuracy of sensor models were improved with images atsmaller GSD compared to the sensor model accuracy established with original images. At 1.25~1.67 m GSD, the accuracy of about 2.4 m was achieved. This finding lead that the possibility of automated GCP extraction and precision ortho-image generation for CAS-4 with improved accuracy.