• Title/Summary/Keyword: 유사도 피드백

Search Result 163, Processing Time 0.034 seconds

An Effective Snippet Generation Method using Text Summarization Techniques based on Pseudo Relevance Feedback (유사 적합성 피드백 기반의 문서 요약 기법을 이용한 효과적인 스니펫 생성)

  • An, Hong-Guk;Ko, Young-Joong;Seo, Jung-Yun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.174-181
    • /
    • 2007
  • 정보 검색의 결과로 나타나는 요약문을 스니펫(snippet)이라 한다. 사용자는 자신이 원하는 정보를 얻기 위해 문서를 검색하는데, 이 때 스니펫은 사용자가 원하는 문서를 찾는데 중요한 역할을 한다. 본 논문에서는 정보검색 분야에서 높은 성능을 보이는 유사 적합성 피드백을 자동 문서 요약에 맞게 적용하여 높은 성능의 스니펫 생성 시스템을 구현한다. 우선, 사용자의 질의가 포함된 문장들을 일차적으로 요약 문장 후보로 추출한다. 그리고 추출된 문장 후보로부터 명사들을 질의 후보로 고려한다. 각 문장이 질의의 포함 여부에 따라 문장의 적합성을 판단하게 되고, 유사 적합성 피드백 확률 모델에 적용한 후 질의 후보들의 가중치를 추정하여 가중치 순위를 통해 확장할 질의들을 결정한다. 확장된 질의들과 기존의 질의들의 가중치를 합산하여 각 문장의 순위를 매기게 되고 가장 높은 순위의 문장들이 스니펫으로 제시된다. 논문에서 제안한 기법은 추가적인 핵심 질의들을 자동으로 확장하여 중요한 문장을 추출할 수 있다. 이 연구를 위해서 일반 상용 정보 검색 서비스에서 제공하는 스니펫을 수집하였고 이들의 정확도와 시스템의 정확도를 비교하였다. 실험 결과를 통해 살펴본 제안된 시스템의 성능은 상용 정보 검색기에서 제공되고 잇는 스니펫의 정확도 보다 우수한 성능을 보였다.

  • PDF

A Study on Information Retrieval Using Query Splitting Relevance Feedback (질의분해 적합성 피드백을 이용한 정보검색에 관한 연구)

  • 김영천;박병권;이성주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.252-257
    • /
    • 2001
  • In conventional boolean retrieval systems, document ranking is not supported and similarity coefficients cannot be computed between queries and documents. The MMM, Paice and P-norm models have been proposed in the past to support the ranking facility for boolean retrieval systems. They have common properties of interpreting boolean operators softly. In this paper we propose a new soft evaluation method for Information retrieval using query splitting relevance feedback model. We also show through performance comparison that query splitting relevance feedback(QSRF) is more efficient and effective than MMM, Paice and P-norm.

  • PDF

Visualization System for Dance Movement Feedback using MediaPipe (MediaPipe를 활용한 춤동작 피드백 시각화 시스템)

  • Hyeon-Seo Kim;Jae-Yeung Jeong;Bong-Jun Choi;Mi-Kyeong Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.217-224
    • /
    • 2024
  • With the rapid growth of K-POP, the dance content industry is spreading. With the recent increase in the spread of SNS, they also shoot and share their dance videos. However, it is not easy for dance beginners who are new to dancing to learn dance moves because it is difficult to receive objective feedback when dancing alone while watching videos. This paper describes a system that uses MediaPipe to compare choreography videos and dance videos of users and detect whether they are following the movement correctly. This study proposes a method of giving feedback based on Color Map to users by calculating the similarity of dance movements between user images taken with webcam or camera and choreography images using cosine similarity and COCO OKS. Through this system, objective feedback on users' dance movements can be visually received, and beginners are expected to be able to learn accurate dance movements.

Oriental Way of Systems Thinking

  • Kim, Dong-Hwan
    • Korean System Dynamics Review
    • /
    • v.4 no.1
    • /
    • pp.55-68
    • /
    • 2003
  • 1960년대 이후 서양에서 발전된 시스템 사고는 동양 사고와는 상이한 사고 체계로 받아들여져 왔다. 피드백 시스템에 초점을 두는 시스템 사고는 오히려 전통적인 동양 사고와 유사하다는 점을 본 논문을 통하여 밝히고자 하였다. 특히 본 논문에서는 노자의 도덕경에서 자신의 행위가 자신에게로 되돌아온다는 순환적 사구 즉 피드백 사고를 발견할 수 있다는 점을 지적하였다. 아울러 동양의 전통적 관점이라고 할 수 있는 음양오행이론 역시 피드백 사고로 해석될 수 있다는 점을 밝히고자 하였다. 본 논문은 이러한 사상적 유사성이야말로 시스템 사고를 동양 사회에 도입할 수 있는 유연한 토대를 제공한다는 점을 지적하였다. 동양사고와 시스템 사고의 유사성이야말로 시스템 사고를 동양 사회에 적용하고 확산시키는데 있어서 지렛대의 역할을 수행할 것이다.

  • PDF

A Study on Information Retrieval of Web Using Local Context Analysts Feedback (지역적 문맥 분석 피드백을 이용한 웹 정보검색에 관한 연구)

  • Kim, Young-Cheon;Lee, Sung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.745-751
    • /
    • 2004
  • In conventional boolean retrieval systems, document ranking is not supported and similarity coefficients cannot be computed between queries and documents. The MMM(Max and Min Model), Paice and P-norm models have been proposed in the past to support the ranking facility for boolean retrieval systems. They have common properties of interpreting boolean operators softly In this paper we propose a new soft evaluation method for web Information retrieval using local context analysis feedback model. We also show through performance comparison that local contort analysis feedback is more efficient and effective than MMM, Paice and P-norm.

GB-Index: An Indexing Method for High Dimensional Complex Similarity Queries with Relevance Feedback (GB-색인: 고차원 데이타의 복합 유사 질의 및 적합성 피드백을 위한 색인 기법)

  • Cha Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.362-371
    • /
    • 2005
  • Similarity indexing and searching are well known to be difficult in high-dimensional applications such as multimedia databases. Especially, they become more difficult when multiple features have to be indexed together. In this paper, we propose a novel indexing method called the GB-index that is designed to efficiently handle complex similarity queries as well as relevance feedback in high-dimensional image databases. In order to provide the flexibility in controlling multiple features and query objects, the GB-index treats each dimension independently The efficiency of the GB-index is realized by specialized bitmap indexing that represents all objects in a database as a set of bitmaps. Main contributions of the GB-index are three-fold: (1) It provides a novel way to index high-dimensional data; (2) It efficiently handles complex similarity queries; and (3) Disjunctive queries driven by relevance feedback are efficiently treated. Empirical results demonstrate that the GB-index achieves great speedups over the sequential scan and the VA-file.

Image Retrieval using Distribution Block Signature of Main Colors' Set and Performance Boosting via Relevance feedback (주요 색상의 분포 블록기호를 이용한 영상검색과 유사도 피드백을 통한 이미지 검색)

  • 박한수;유헌우;장동식
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2004
  • This paper proposes a new content-based image retrieval algorithm using color-spatial information. For the purpose, the paper suggests two kinds of indexing key to prune away irrelevant images to a given query image; MCS(Main Colors' Set), which is related with color information and DBS (Distribution Block Signature), which is related with spatial information. After successively applying these filters to a database, we could get a small amount of high potential candidates that are somewhat similar to the query image. Then we would make use of new QM(Quad modeling) and relevance feedback mechanism to obtain more accurate retrieval. It would enhance the retrieval effectiveness by dynamically modulating the weights of color-spatial information. Experiments show that the proposed algorithm can apply successfully image retrieval applications.

A Design of the Similarity Evaluation System using Abstract Syntax Tree (AST를 이용한 프로그램 유사도 평가 시스템 설계)

  • 정재은;김영철;김상헌;유재우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.430-432
    • /
    • 1999
  • 본 논문에서는 AST(Abstract Syntax Tree)를 이용하여 서로 다른 프로그램의 유사도를 측정하는 방법을 제시한다. 지금까지 유사도 평가 방법은 거의 제시되지 않고 프로그램의 비교평가 연구는 찾아볼 수가 없다. 본 시스템은 서로 다른 여러 프로그램을 입력받아 파싱함으로써 AST를 생성하여 생성된 AST를 유사도 측정에 이용한다. 따라서 다른 비교 측정 시스템보다 비용과 속도 면에서 경제적이고 빠르게 유사도를 검출해 낼 수 있으며, 또한 신속히 평가 결과를 학생들에게 피드백 함으로써 큰 학습성과를 기대할 수 있다.

  • PDF

Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet (의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1517-1524
    • /
    • 2011
  • In this paper, a new document summarization method, which uses the semantic features and the pseudo relevance feedback (PRF) by using WordNet, is introduced to extract meaningful sentences relevant to a user query. The proposed method can improve the quality of document summaries because the inherent semantic of the documents are well reflected by the semantic feature from NMF. In addition, it uses the PRF by the semantic features and WordNet to reduce the semantic gap between the high level user's requirement and the low level vector representation. The experimental results demonstrate that the proposed method achieves better performance that the other methods.

Efficient Automatic Image Annotation with Relevance Feedback (적합성 피드백을 적용한 효율적인 자동 이미지 키워드 연결)

  • Song, Ji-Young;Kim, Woo-Cheol;Kim, Seung-Woo;Park, Sang-Hyun
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.31-34
    • /
    • 2005
  • 디지털 이미지의 양이 증가함에 따라 원하는 이미지를 정확하고 빠르게 찾을 수 있는 방법의 필요성이 증가하고 있다. 이미지 검색 방법으로는 이미지의 색상이나 명암과 같은 시각적 특성을 검색 조건으로 이용하는 내용 기반 검색과 이미지를 설명하는 키워드를 검색 조건으로 이용하는 키워드 기반 검색이 있다. 하지만 이러한 방법만으로는 사용자가 원하는 이미지를 정확하게 찾기 힘들다는 문제점이 제기되어 왔다. 따라서 최근에는 검색 도중 사용자의 응답을 받아 사용자의 요구를 파악함으로써 향상된 검색 결과를 제공하는 적합성 피드백에 대한 연구가 많이 진행되고 있다. 하지만 적합성 피드백을 이용하는 방법들도 원하는 결과를 얻기 위해서는 여러 번의 피드백을 필요로 하고 질의 수행이 완료된 후에는 얻어진 피드백 정보를 재사용하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 키워드를 연결한 후 사용자의 피드백 정보를 반영하여 키워드의 신뢰도를 조절함으로써 키워드 기반 이미지 검색의 정확도를 높일 수 있는 모델을 제안한다. 제안된 모델에서는 사용자로부터 피드백을 받은 이미지뿐만 아니라 긍정적 피드백을 받은 이미지들이 공통적으로 가지는 시각적 특성과 유사한 시각적 특성을 가지는 다른 이미지들까지도 키워드의 신뢰도를 조정함으로써 좀 더 빠른 시간 내에 검색 결과의 정확도를 높이도록 한다.

  • PDF