• Title/Summary/Keyword: 유사도 측정 함수

Search Result 212, Processing Time 0.027 seconds

A Study of Efficient Pattern Classification on Texture Feature Representation Coordinate System (텍스처 특징 표현 좌표체계에서의 효율적인 패턴 분류 방법에 대한 연구)

  • Woo, Kyeong-Deok;Kim, Sung-Gook;Baik, Sung-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.237-248
    • /
    • 2010
  • When scenes in the real world are perceived for the purpose of computer/robot vision fields, there are great deals of texture based patterns in them. This paper introduces a texture feature representation on a coordinate system in which many different patterns can be represented with a mathematical model (Gabor function). The representation of texture features of each pattern on the coordinate system results in the high performance/competence of texture pattern classification. A decision tree algorithm is used to classify pattern data represented on the proposed coordinate system. The experimental results for the texture pattern classification show that the proposed method is better than previous researches.

Effect of NaCl on the Mixed Micellar Properties of Sodium Dodecyl Sulfate(SDS) with Tetraethylene Glycol Monododecyl Ether(TGME) (Sodium Dodecyl Sulfate(SDS)와 Tetraethylene Glycol Monododecyl Ether(TGME)의 혼합미셀화에 미치는 NaCl의 효과)

  • Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.896-901
    • /
    • 1995
  • The critical micelle concentrations(CMC$^*$) of the mixed surfactant systems of Sodium dodecyl sulfate(SDS) with Tetraethylene glycol monododecyl ether(TGME) in the aqueous solutions of NaCl at $25^{\circ}C$ were determined as a function of the overall mole fraction of $SDS(\alpha1)$ by the use of surface tension method. Various thermodynamic parameters for the micellization of SDS/TGME mixed surfactant systems were calculated and analyzed by means of the equations derived from the nonideal mixed micelle model, based on the pseudo-phase separation model.

  • PDF

A Study on the Consistency Measurement of Weathered Granite Soil (화강암질풍화토(花崗岩質風化土)의 Consistency 측정(測定)에 관한 연구(硏究))

  • Kang, Yea Mook;Cho, Seung Seup;Hong, Soon Pil
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.109-118
    • /
    • 1980
  • This test was carried out to present criterion to measure the liquid limit of weathered granite soil by using the flow-table method whose operation is easier and more convenient than slump test. The results are as follows. 1. Since liquid limit of weathered granite soil depends upon the particle size distribution, weatheredness and content of colored minerals, maximum particle size should be prescribed when the testing rule of liquid limit by flow-table method is enacted. 2. If take the averaged water content as liquid limit where the height and width of flow are 1 cm respectively by 10 times dropping, this liquid limit is slightly less than the one by slump test. The differance of liquid limit between flow table method and slump test is about 10%. 3. Correlation curves of flow width-water content and flow hight-water content show similar shapes. Those are straight lines in semi-logarithm paper just as liquid limit test. 4. This flow-table method is more convenient and has less personal error of measurement than slump test does. So flow-table method would be favourably utilized for judging the engineering properties of soil.

  • PDF

Dynamic Analyses on Embedded Piles Based on Wave Equation (파동방정식에 근거한 매입말뚝의 동적 분석)

  • Seo, Mi-Jeong;Park, Jong-Bae;Park, Yong-Boo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.5-13
    • /
    • 2015
  • For the bearing capacity evaluation, dynamic pile tests instead of static pile tests have been commonly used in embedded piles, which are known to have low noise and low vibration construction method. The objective of this study is to analyze the bearing capacity and penetration behaviors of embedded piles, which are constructed in different ground conditions, by using force and velocity signals obtained in the final blows during construction of embedded piles. For the dynamic pile analyses, the CAse Pile Wave Analysis Program (CAPWAP) and Wave Equation Analysis of Piles (WEAP) have been commonly used. In this study, the CAPWAP and WEAP are used for the analyses of the dynamic pile tests, which are conducted on embedded piles. The input values, output values, and force-velocity graphs of CAPWAP determined by analyzing the measured force-velocity signals are investigated. In addition, similar force-velocity singals are obtained from the WEAP by analyzing the input values of the WEAP. Considering the subsurface investigation results around the pile tips, if the N-value increases exponentially along the depth, toe quake value should be small, and therefore large bearing capacity is identified. On the contrary, if the N-value increases linearly, the bearing capacity is small because of large toe quake value. Furthermore, the stiffness of hammer cushion and pile cushion, which is difficult to find correct values, is recommended lower than 500 kN/mm. This study demonstrates that the results of WEAP may be similar to those of CAPWAP and the WEAP can be used to estimate the bearing capacity of embedded piles.

Measurements and Data Processing for Blast Vibrations and Air-blasts (발파진동 및 발파소음의 측정 및 자료처리)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.29-50
    • /
    • 2015
  • Safe blast criteria based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of blast vibrations. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). In contrast to SRSD scheme, however, the function of maximum charge per delay for CRSD increases without bound after the intersection point of these two functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, it is suggested that CRSD be used within a specified distance slightly beyond the intersection point. On the other hand, there are several attempts that predict vibration level(VL) from the peak particle velocity(PPV) or estimate VL based on the scaled distances without considering their frequency spectra. It appears that these attempts are conducted in blasting contracts only for the purpose of satisfying the environment-related law, which mainly deals with the annoyance aspects of noises and vibrations in human life. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only between the waves with the same or very similar frequency spectra. Finally, it is a known fact that structural damage due to ground vibration is related to PPV level, the safety level criteria for structures should be defined by allowable PPV levels together with their zero crossing frequencies (ZCF).

A Study on Groundwater Age Dating Methods Using Tritium (삼중수소를 이용한 지하수 연령측정 방법에 관한 연구)

  • 오진석;김선준
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.49-57
    • /
    • 1995
  • Areas of Chungyang in Chungcheongnamdo, Cheju island and Georgia in U.S.A. were selected to calculate their groundwater ages and dispersion parameters using tritium. Piston flow model, Completely mixing model and Dispersion binomial model which calculate men residence times, and Dispersion normal model and Dispersion model(C$\_$FF) which calculate mean residence times and dispersion parameters simultaneously were applied. Since the input data, tritium concentrations of rainwaters, lack in part, tritium input function was prepared using the correlation of tritium concentrations of rainwaters of Pohang, Korea and Ottawa, Canada. Similar results of PFM and DBM reflect the intrinsical similarity of two models, assumption of low dispersion. The ages of sites of showing relatively higher tritium concentrations than other sites in the sam, region were not calculated by CMM. Since the calculations of DNM and DM(C$\_$FF/) provide the combination of wide ranges of parameters and groundwater ages, the ranges of dispersion parameters were narrowed down under the assumption that ages calculated by PFM and DBM are correct. Since large variation of tritium concentrations of outflows in a same region may reflect the different characteristics of each groundwater flow regime, using only one specific model on a whole region is not recommended.

  • PDF

In-situ Stress Measurement Using AE and DRA (AE와 DRA를 이용한 초기응력의 측정에 관한 연구)

  • Park, Pae-Han;Jeon, Seok-Won;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • In-situ stress measurement using AE (Acoustic Emission) and DRA (Deformation Rate Analysis) is usually carried out under uniaxial loading in the laboratory and it consumes delay time from drilling to testing. Therefore, it should be considered how the lateral stress and delay time influence on the test results for the in-situ stress determination. As the delay time increased, the accuracy of estimating the pre-stress decreased. The pre-stress of the specimen loaded only axially was determined within an error of less than 9% (using AE) and 4% (using DRA). And the specimen on which axial pre-stress and the confining pressure were loaded had an error of less than 17% (using AE) and 14% (using DRA). The results of AE and DRA for field specimens were very similar with each other but smaller than those of hydraulic fracturing method.

  • PDF

Is ultrasound wave affected by anisotropy of trabeculae (섬유주의 이방성에 따른 초음파의 파형 변화)

  • Yoon, Won-Sok;Yoon, Young-June
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.236-241
    • /
    • 2011
  • Mechanical properties of cancellous bone with a high porosity and cortical bone with a high fraction of solid are estimated by the measurement of ultrasonic wave propagation. The speed of sound (SOS) in ultrasonic waves is usually measured by two equations, bulk wave equation and bar wave equation. Bulk wave speed has almost same as the fast wave of Biot's theory. In this study, we examine whether the bulk wave speed is influenced by the anisotropy of bone matrix. The SOS when the bone matrix is isotropy is 0.69% faster than that when the bone matrix is transversely isotropy. We also examine if the use of bar equation is adequate for a cortical bone. In the previous paper, the bar wave speed is a function of Young's modulus or elastic coefficient tensor. In the same manner, the effect of bar wave speed to isotropic and anisotropic bone is estimated.

고속파 전자가열을 시도한 KSTAR 토카막 원형 플라즈마에서의 ICRF 고주파 부하 저항

  • Wang, Seon-Jeong;Kim, Seon-Ho;Gwak, Jong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.297-297
    • /
    • 2010
  • KSTAR 토카막의 두번째 실험 캠페인 동안 고속파 전자가열 (FWEH)을 위한 ICRF 고주파입사 실험을 실시하였다. 토로이달 자기장은 2 T, 플라즈마 전류는 200-300 kA, 주반경은 1.8 m, 부반경은 0.5 m의 원형 플라즈마가 가열 대상이 되었으며, 네개의 ICRF 안테나 전류띠 가운데 중심부의 두개의 전류띠를 최대 300 kW로 구동하기 위한 운전 주파수는 44.2 MHz가 선택 되었다. 이 주파수는 플라즈마의 모든 영역에서 이온 사이클로트론 공명을 일으키지 않으므로 플라즈마에 흡수되는 대부분의 출력은 전자에게 전달될 것으로 기대되었다. 낮은 고주파-플라즈마 결합으로 인하여 전송선의 최대 고주파 전압이 허용치를 초과하기 때문에 비교적 낮은 최대 출력만이 허용 되었으나, ECE에 의해 관측된 전자의 온도는 국지적으로 최대 150 % 까지 증가하는 것을 확인 할 수 있었다. 낮은 고주파-플라즈마 결합의 첫번째 원인은 FWEH의 효율이 이온을 가열할 때 보다 상대적으로 낮기 때문이다. 플라즈마 내에 이온 사이클로트론 공명층이 형성되면 높은 효율로 고주파를 입사 할 수 있다는 것은 잘 알려진 사실이다. 또다른 원인은 D 형상의 플라즈마에 맞도록 만들어진 안테나와, 원형 플라즈마간의 부조화로 인하여 고속파 차단층이 (Fast Wave Cutt-off Layer) 평균적으로 넓게 형성되기 때문이다. 플라즈마 외곽에 반드시 존재하는 낮은 플라즈마 밀도의 고속파 차단층 내부에서, 중심부로 향하는 고주파의 진폭은 지수함수로 감쇠하므로 가능하면 플라즈마 밀도를 높여 차단층 자체의 폭을 줄이거나, 안테나 전류띠를 플라즈마에 바짝 접근시켜야만 한다. 고주파 진단 장치로는 송출기의 출력과 반사파 측정 장치, 공명루프의 전압 측정 장치가 있는데, 이것들을 이용하여 안테나에 전달되는 출력 및 고주파-플라즈마 결합 효율을 나타내는 플라즈마에 대한 고주파 부하 저항을 구할 수 있다. 측정 결과, 부하 저항의 최소값은 진공시 또는 ICRF만의 방전시의 값 0.25 Ohm 보다 큰 0.5 Ohm을 나타냈으며, 최대값은 플라즈마의 상태에 따라 1 Ohm에서 2 Ohm 사이에서 매우 빠르게 요동하는 것을 확인했다. Mm 파 반사계의 측정에 의하면 플라즈마 언저리의 위치가 약 3 cm 정도의 크기로 요동하는 것으로 나타났는데, 부하 저항과 언저리 위치의 파형이 정확하게 일치하지 않지만 유사한 경향성을 가진 것으로 보인다. 따라서 플라즈마 언저리 위치의 제어를 통하여 가열 효율을 높게 유지할 수 있음을 알 수 있다. 본 발표에서는 실험의 소개와 함께 부하 저항의 관점에서 가열 효율을 높일 방안을 토론하도록 한다.

  • PDF

Real-time Color Recognition Based on Graphic Hardware Acceleration (그래픽 하드웨어 가속을 이용한 실시간 색상 인식)

  • Kim, Ku-Jin;Yoon, Ji-Young;Choi, Yoo-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • In this paper, we present a real-time algorithm for recognizing the vehicle color from the indoor and outdoor vehicle images based on GPU (Graphics Processing Unit) acceleration. In the preprocessing step, we construct feature victors from the sample vehicle images with different colors. Then, we combine the feature vectors for each color and store them as a reference texture that would be used in the GPU. Given an input vehicle image, the CPU constructs its feature Hector, and then the GPU compares it with the sample feature vectors in the reference texture. The similarities between the input feature vector and the sample feature vectors for each color are measured, and then the result is transferred to the CPU to recognize the vehicle color. The output colors are categorized into seven colors that include three achromatic colors: black, silver, and white and four chromatic colors: red, yellow, blue, and green. We construct feature vectors by using the histograms which consist of hue-saturation pairs and hue-intensity pairs. The weight factor is given to the saturation values. Our algorithm shows 94.67% of successful color recognition rate, by using a large number of sample images captured in various environments, by generating feature vectors that distinguish different colors, and by utilizing an appropriate likelihood function. We also accelerate the speed of color recognition by utilizing the parallel computation functionality in the GPU. In the experiments, we constructed a reference texture from 7,168 sample images, where 1,024 images were used for each color. The average time for generating a feature vector is 0.509ms for the $150{\times}113$ resolution image. After the feature vector is constructed, the execution time for GPU-based color recognition is 2.316ms in average, and this is 5.47 times faster than the case when the algorithm is executed in the CPU. Our experiments were limited to the vehicle images only, but our algorithm can be extended to the input images of the general objects.