• 제목/요약/키워드: 유사군집

검색결과 1,066건 처리시간 0.024초

주성분 분석과 퍼지 연관을 이용한 문서군집 방법 (Document Clustering Method using PCA and Fuzzy Association)

  • 박선;안동언
    • 정보처리학회논문지B
    • /
    • 제17B권2호
    • /
    • pp.177-182
    • /
    • 2010
  • 본 논문은 주성분 분석과 퍼지 연관을 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 주성분 분석의 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택하기 때문에 문서군집의 내부구조를 더 잘 표현할 수 있다. 또한 퍼지연관 값을 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

지리산국립공원 거림계곡 식물군집구조 (Plant Communisty Structure in Keolim valley of Chirisan National Park)

  • 권전오
    • 한국환경생태학회지
    • /
    • 제13권4호
    • /
    • pp.392-403
    • /
    • 2000
  • 지리산국립공원 거림계곡 식물군집구조를 파악하기 위하여 거림계곡 내 등산로를 따라 66개(6,600m2)의 방형구를 설정하였으며 DCA 기법을 이용하여 분석한 결과 해발고 740-950m 의 조사구는 졸참나무군집(군집I) 해발 950-1,340m의 조사구는 신갈나무군집(군집II) 해발 1,340-1,390m의 조사구는 구상나무-거제수나무군집(군집III)으로 분류되었다 상대우점치 흉고직경급별 분포 분석결과 각 군집의 우점종인 졸참나무 신갈나무 구상나무가 우점하는 군집으로 계속유지될것으로 판단되었으며 특히 관목층은 조랫대의 밀도가 높아 천이진행에 영향을 주는 동시에 종다양도가 낮은 것으로 판단되었다 한편 3개 군집간의 유사도지수는 낮은 상태로 해발고에 따라 식생구분이 명확하였다

  • PDF

자연 영상에 대한 Naive Convolutional Auto Encoder의 특징 추출 성능에 관한 연구 (A Study on Feature Extraction Performance of Naive Convolutional Auto Encoder to Natural Images)

  • 이성주;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1286-1289
    • /
    • 2022
  • 최근 영상 군집화 분야는 딥러닝 모델에게 Self-supervision을 주거나 unlabeled 영상에 유사-레이블을 주는 방식으로 연구되고 있다. 또한, 고차원 컬러 자연 영상에 대해 잘 압축된 특징 벡터를 추출하는 것은 군집화에 있어 중요한 기준이 된다. 본 연구에서는 자연 영상에 대한 Convolutional Auto Encoder의 특징 추출 성능을 평가하기 위해 설계한 실험 방법을 소개한다. 특히 모델의 특징 추출 능력을 순수하게 확인하기 위하여 Self-supervision 및 유사-레이블을 제공하지 않은 채 Naive한 모델의 결과를 분석할 것이다. 먼저 실험을 위해 설계된 4가지 비지도학습 모델의 복원 결과를 통해 모델별 학습 정도를 확인한다. 그리고 비지도 모델이 다량의 unlabeled 영상으로 학습되어도 더 적은 labeled 데이터로 학습된 지도학습 모델의 특징 추출 성능에 못 미침을 특징 벡터의 군집화 및 분류 실험 결과를 통해 확인한다. 또한, 지도학습 모델에 데이터셋 간 교차 학습을 수행하여 출력된 특징 벡터의 군집화 및 분류 성능도 확인한다.

  • PDF

단어 분별도에 기반한 뉴스 검색 문서 요약 (Search Resulted News Summarization using Word Discriminability)

  • 이상건;이혜민;김기령;서덕호;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.175-178
    • /
    • 2014
  • 다양한 언론사로부터 기사를 제공받아 서비스하는 인터넷 포털의 뉴스에서는 수많은 중복 기사가 실시간으로 등록된다. 이로 인하여 인터넷 포털에서 관심 있는 주제의 기사를 검색하여 찾아보려는 경우 검색키워드를 포함한 기사의 수가 지나치게 많아 원하는 정보를 적절하게 얻기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해서 검색 기사 중 유사한 문서를 군집화하고 군집에 대한 다중문서요약을 사용자에게 제시하여 검색된 기사를 효율적으로 활용할 수 있는 방법을 제시한다. 다중문서 요약에서는 뉴스 기사에 적합한 단어 가중치인 분별도(discriminability)를 제안하여 사용하여 군집화된 기사로부터 유사 문장을 군집한다. 시스템에서는 군집된 기사의 대표 문장 군집에서 대표 문장, 즉 키워드에 대한 주제별 기사의 요약문을 결과로 제시하여, 효율적인 뉴스 검색을 지원한다.

  • PDF

응집 계층 군집화 기법을 이용한 이종 공간정보의 M:N 대응 클래스 군집 쌍 탐색 (Detection of M:N corresponding class group pairs between two spatial datasets with agglomerative hierarchical clustering)

  • 허용;김정옥;유기윤
    • 한국측량학회지
    • /
    • 제30권2호
    • /
    • pp.125-134
    • /
    • 2012
  • 본 연구는 두 공간정보의 대응 클래스 군집 쌍 탐색을 중심으로 의미론적 정합과정에서 발생하는 M:N 대응관계를 분석하는 방법을 제안한다. 객체의 공유 관계를 이용하여 클래스의 유사도를 측정하고 높은 유사도를 가지는 클래스들을 군집화함으로써 M:N 대응관계를 탐색하고자 한다. 클래스 사이의 유사도를 그래프 모형으로 표현하고 그래프 임베딩 기법을 적용하여 투영공간에서 클래스 사이의 거리가 클래스 중첩분석에 의한 국지적 유사도에 반비례하도록 개별 클래스들의 투영좌표를 계산하고 군집화를 수행함으로써 계층적 대응 군집 쌍을 탐색할 수 있다. 제안된 방법을 평가하기 위하여 경기도 수원시의 수치지형도와 연속지적도에 적용하여 수치지형도의 면 객체 레이어와 연속지적도의 필지 지목의 대응 군집 쌍을 탐색하였다. 탐색된 대응 클래스 쌍의 F-measure를 측정한 결과 약 0.80에서 0.35 사이의 다양한 값을 얻을 수 있었으며, 클래스 명칭과는 상이한 다양한 대응관계를 얻을 수 있었다.

Word2Vec를 이용한 한국어 단어 군집화 기법 (Korean Language Clustering using Word2Vec)

  • 허지욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.25-30
    • /
    • 2018
  • 최근 인터넷의 발전과 함께 사용자들이 원하는 정보를 빠르게 획득하기 위해서는 효율적인 검색 결과를 제공해주는 정보검색이나 데이터 추출등과 같은 연구 분야에 대한 중요성이 점점 커지고 있다. 하지만 새롭게 생겨나는 한국어 단어나 유행어들은 의미파악하기가 어렵기 때문에 주어진 단어와 의미적으로 유사한 단어들을 찾아 분석하는 기법들에 대한 연구가 필요하다. 이를 해결하기 위한 방법 중 하나인 단어 군집화 기법은 문서에서 주어진 단어와 의미상 유사한 단어들을 찾아서 묶어주는 기법이다. 본 논문에서는 Word2Vec기법을 이용하여 주어진 한글 문서의 단어들을 임베딩하여 자동적으로 유사한 한국어 단어들을 군집화 하는 기법을 제안한다.

반려동물 사료 추천시스템을 위한 유사성 측정 알고리즘에 대한 연구 (A Study of Similarity Measure Algorithms for Recomendation System about the PET Food)

  • 김삼택
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.159-164
    • /
    • 2019
  • ICT 기술 발전으로 강아지와 고양이등 반려동물 돌보기와 건강에 대한 관심도가 높아지고 있다. 본 논문에서는 반려동물 산업의 다양한 분야에 활용될 수 있도록 반려동물 사료의 성분 데이터를 기반으로 군집분석을 수행하고 적합한 서비스에 대해 고찰한다. 군집분석을 위해 시중에서 유통되고 있는 300여 개의 강아지 및 고양이 펫푸드를 대상으로 성분별 상관관계를 분석하여 유사성을 측정하며, Hierarchical, K-Means, Partitioning around medoids(PAM), Density-based, Mean-Shift 등의 다양한 클러스터링 기법을 활용하여 군집화 하여 분석한다. 또한 반려동물의 개인화 추천시스템도 제안한다. 본 논문의 연구 결과는 반려동물을 대상으로 한 사료 추천시스템 등의 맞춤형 개인화 서비스에 활용할 수 있다.

비음수 행렬 분해와 퍼지 관계를 이용한 문서군집 (Document Clustering using Non-negative Matrix Factorization and Fuzzy Relationship)

  • 박선;김경준
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.239-246
    • /
    • 2010
  • 본 논문은 비음수 행렬 분해와 퍼지 관계를 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 비음수 행렬 분해된 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택함으로서 문서군집의 내부구조를 더 잘 표현할 수 있으며, 퍼지 관계 값을 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

의미 특징과 퍼지를 이용한 문서군집 (Document Clustering using Semantic Features and Fuzzy)

  • 박선;김철원;안동언
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.293-295
    • /
    • 2010
  • 본 논문은 문서의 의미특징과 퍼지를 이용한 새로운 문서군집 방법을 제안한다. 제안된 방법은 비음수 행렬 분해된 의미특징을 이용하여 군집 레이블과 군집의 대표 용어들을 선택함으로서 문서군집의 내부구조를 더 잘 표현할 수 있으며, 퍼지를 이용한 군집은 문서군집에 유사하지 않은 문서를 더 잘 구분함으로써 문서군집의 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

민주지산의 산림군집구조분석 (The Analysis of the Forest Community Structure of Mt. Minjuji)

  • 최송현;조현서;이경재
    • 한국환경생태학회지
    • /
    • 제11권1호
    • /
    • pp.111-125
    • /
    • 1997
  • 민주지산지역의 극상림 산림군집구조를 분석하고 생태계 기초자료를 구축하여 이 지역의 개발압력에 대응하는 생태고나광, 자연학습 등 친환경적 개발에 응용하고자 49개 조사구를 선정하고 군집구조조사를 실시하였다. TWINSPAN분석 결과 각 군집은 소나무-서어나무-졸참나무군집(군집 I), 신갈나무-졸참나무-굴피나무군집(군집 II), 신갈나무군집(군집 III), 들메나무-고로쇠나무군집(군집IV), 층층나무-들메나무군집(군집V), 들메나무-까치박달나무군집(군집 VI) 그리고 들메나무-서어나무군집(군집 VII)으로 분류되었다. 산림의 종조성, 유사도지수, 종다양성분석, 흉고직경분석을 실시한 결과 군집 I~III을 제외하고는 활엽수혼효극상림으로 밝혀졌다.

  • PDF