• Title/Summary/Keyword: 유문암질 화산작용

Search Result 22, Processing Time 0.024 seconds

SHRIMP U-Pb Dating and Volcanic History of the Jipum Volcanics, Western Yeongdeok, Korea (영덕 서부 지품화산암층의 SHRIMP U-Pb 연대측정과 화산과정)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.341-352
    • /
    • 2017
  • The Jipum Volcanics, occurred in western Yeongdeok, are a stratigraphic unit that is composed of rhyolitic pyroclastic rocks, tuffites, andesitic hyaloclastites, rhyolite lavas, tuffaceous conglomerates and andesite lavas. The SHRIMP U-Pb zircon dating yielded eruption ages of $68.5{\pm}1.6Ma$ from the rhyolitic pyroclastic rocks. Around the time, the unit was generated by dominant rhyolitic volcanisms and locally added by concomitant andesitc volcanisms from another vents. The rhyolitic volcanisms first produced the pyroclastic rocks by phreatomagmatic explosions from rhyolitic magma, later made of the rhyolite lava dome by lava effusions from reopening of the rhyolitc magma at the existing vent. At the time between first and second rhyolitic volcanisms, the tuffites were deposited at a shallow depression in the distal volcanic edifice, and andesitic volcanisms first made of the hyaloclastites by quench fragmentation when hot andesite lavas flew into the depression to contact with cold water. and the Jipum volcano was finally covered with the thin andesitic lavas by lava effusions from another vent.

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.

Tectonic Setting and Arc Volcanisms of the Gyeongsang Arc in the Southeastern Korean Peninsula (한반도 남동부 경상호의 조구조 배경과 호화산작용)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.367-383
    • /
    • 2012
  • The Gyeongsang Arc is the most notable of the Korea Arc that is composed of several volcanic arcs trending to NE-SW direction in the Korean peninsula. The Hayang Group has many volcanogenic interbeds of lava flows by alkaline or calc-alkaline basaltic volcanisms during early Cretaceous. Late Cretaceous calc-alkaline andesitic and rhyolitic volcanisms reconstructed the Gyeongsang Arc that consist of thick volcanic strata on the Hayang Group in The Gyeongsang Basin. The volcanisms characterize first eruptions of basaltic and andesitic lavas with small pyroclastics, and continue later eruptions of dacitic and rhyolitic ash-fall and voluminous ash-flow with some calderas and then domes and dykes. During the Early Cretaceous (about 120 Ma), oblique subduction of the Izanagi plate to NNW from N direction results in sinistral strike-slip faults to open a pull-apart basin in back-arc area of the Gyeongsang Arc, in which erupted lava flows from generation of magma by a decrease in lithostatic pressure. Therefore the Gyeongsang Basin is interpreted into back-arc basin reconstructed by a continental rifting. Arc volcanism began in about 100 Ma with exaggeration of the back-arc basin in the Gyeongsang, and then changed violently to construct volcanic arcs. During the Late Cretaceous (about 90 Ma), orthogonal subduction of the Izanagi plate to NW from NNW direction ceased development of the basin to prolong violent volcanisms.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Petrology of the Cretaceous Volcanic Rocks in Yeongdo island, Busan (부산 영도 일대의 백악기 화산암류에 대한 암석학적 연구)

  • Kim, Dohyoung;Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.293-311
    • /
    • 2021
  • The volcanic rocks that make up Yeongdo island, an administrative district located on the southern coast of Busan, are composed of andesitic and rhyolitic rocks. Andesitic rock is mainly composed of volcanic breccia has a phenorysts of plagioclase and contains rock fragments. The rhyolitic rock is composed of volcanic angular rock at the base of Mt. Bongnae, and welded tuff forms the main mass of Mt. Bongnae. The fiamme structure can be easily observed with the naked eye, and the higher the altitude, the weaker the welded structure develops and the less the amount of rock fragments and crystals constituting the welded tuff. It is indicated that the magma that formed this study area is related to the tectonic environment of the continental margin related to subduction, and that it erupted after undergoing fractional cystallization at the same time with some contaminant in the continental crust. As a result of analyzing the main elements by altitude, it is believed to be the result of mixing at least 4 times or more of magma batches.

Multiple Magmas and Their Evolutions of the Cretaceous Volcanic Rocks in and around Mireukdo Island, Tongyeong (통영 미륵도 주변 백악기 화산암류의 복식 마그마와 그 진화)

  • Hwang, Sang Koo;Lee, So Jin;Ahn, Ung San;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.121-138
    • /
    • 2018
  • We have examined the petrotectonic setting and magmatic evolution from petrochemical characteristics of major and trace elements for the Cretaceous volcanic rocks in and around the Mireukdo Island. The volcanic rocks, can be devided into Jusasan, Unmunsa, Yokji and Saryang subgroups on the ascending order, are classified as basalt, basaltic andesite, andesite, dacite and rhyolite on TAS diagram. Petrochemical data show that the rocks are calc-alkaline series, and suggest that erupted earlier medium-K series and later high-K series. The volcanic rocks provide a case in which the calc-alkaline magma are formed, not only from separate protoliths, but following separate paths from source to surface. Earlier and later subgroups take different paths to the surface respectively, and are emplaced in the shallow crust as a series of discrete magma chambers through the volcanic processes. After emplacement, each chamber evolves indepently through fractional crystallization with a little assimilation of wall rock. The volcanic rocks have close petrotectonic affinities with orogenic suite and subduction-related volcanic arc. The rhyolitic magma can be derived from calc-alkaline andesitic magma by fractional crystallization with crustal assimilation, which may be derived from a partial melt of peridotite in the upper mantle.

Petrotectonic Setting and Petrogenesis of Cretaceous Igneous Rocks in the Cheolwon Basin, Korea (철원분지 백악기 화성암류의 암석조구조적 위치와 암석성인)

  • Hwang, Sang-Koo;Kim, Se-Hyeon;Hwang, Jae-Ha;Kee, Won-Seo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.67-87
    • /
    • 2010
  • This article deal with petrotectonic setting and petrogenesis from petrography and chemical analyses of the Cretaceous volcanic and intrusive rocks in the Cheolwon basin. The volcanic rocks are composed of basalts in Gungpyeong Formation, Geumhaksan Andesite, and rhyolitic rocks (Dongmakgol Tuff, Rhyolite and Jijangbong Tuff), and intrusive rocks, Bojangsan Andesite, granite porphyry and dikes. According to petrochemistry, these rocks represent medium-K to high-K basalt, andesite and rhyolite series that belong to calc-alkaline series, and generally show linear compositional variations of major and trace elements with increase in $SiO_2$ contents, on many Harker diagrams. The incompatible and rare earth elements are characterized by high enrichments than MORB, and gradually high LREE/HREE fractionation and sharp Eu negative anomaly with late strata, on spider diagram and REE pattern. Some trace elements exhibit a continental arc of various volcanic arcs or orogenic suites among destructive plate margins on tectonic discriminant diagrams. These petrochemical data suggest that the basalts may have originated from basaltic calc-alkaline magma of continental arc that produced from a partial melt of upper mantle by supplying some aqueous fluids from a oceanic crust slab under the subduction environment. The andesites and rhyolites may have been evolved from the basaltic magma with fractional crystallization with contamination of some crustal materials. Each volcanic rock may have been respectively erupted from the chamber that differentiated magmas rose sequentially into shallower levels equivalenced at their densities.

Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin (의성분지 동부에 분포하는 백악기 화산암류의 화산층서와 암석학적 연구)

  • 정종옥;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.238-253
    • /
    • 2000
  • In the eastern part of the Euiseong Basin acidic~intermediate volcanic rocks widely distribute on the Cretaceous sedimentary basement. Coeval granitic rocks and dyke rocks intruded into the volcanic rocks. Volcanic stratigraphy of study area are andesite lava, dacitic lapilli tuff, dacitic flow-banded lava, rhyolitic bedded tuff, rhyolitic massive tuff, dacitic massive lava, rhyolitlc welded tuff occur from the lower to the upper strata. $SiO_2$ content of the volcanic rocks range from 51 to 74 wt.%. With the increase of $SiO_2$, the contents of $TiO_2$, $Al_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ decrease but those of $K_2$O increase. The contents of $Na_2$O show dispersive variation. This trend is quite sim-ilar to the major oxide variation in the volcanic rocks from the Yucheon sub-basin. The geochemical natures indicate that the volcanic rocks in the study area are discriminated to the island-arc type high K to medium K calc-alkaline rocks. The compositional variation of the volcanic rocks can be explained by the plagioclase fractionation of the volcanic magmas originated from similar source materials. The volcanic stratigraphy seems to have formed by at least two eruptive sequences of andesitic to rhyolitic and dacitic to rhyolitic magmas which underwent crystallization differentiation.

  • PDF

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF