• Title/Summary/Keyword: 유리 섬유시트

Search Result 39, Processing Time 0.017 seconds

Experimental Study on Reinforcement Effects of PET Sheet (PET 섬유의 보강효과에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.163-169
    • /
    • 2017
  • Although the strength of polyethylene terephthalate (PET) fibers which are generally used to make plastic bottles is low, the deformability of PET fibers is substantially high. Due to these material characteristics, a PET fiber can be used as a reliable strengthening material to resist a large deformation caused by earthquake and research pertinent to application of PET fibers is actively conducted in Japan. Therefore, in this study, experiments have been carried out to investigate the lateral confinement effect of PET fibers and to assess the applicability of PET fibers to construction fields by comparing the strengthening effect of PET fibers to that of carbon and glass fiber sheets. For this purpose, concrete cylinder specimens with parameters of different concrete strength and strengthening layers of carbon fiber sheets, glass fiber sheets, and PET fibers were respectively tested using two sets of cylinders for each parameter. As a result, specimens strengthened with carbon fiber sheets and glass fiber sheets failed due to sudden decrease of strength as with existing studies. However, specimens with PET fibers reached their maximum strength and then failed after gradual decrease strength without failure of PET fibers. In addition, although the strength of specimens with PET fibers did not significantly increase in comparison with that of specimens with carbon fiber sheets and glass fiber sheets, specimens with PET fibers indicated considerable deformability. Thus, a PET fiber can be considered as an effective strengthening material.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Glass Fiber Sheets (유리섬유시트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Kim, Seong-Do;Cho, Baik-Soon;Seong, Jin-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.388-395
    • /
    • 2009
  • To investigate the flexural behavior of RC beams strengthened with glass fiber sheets, 1 control beam and 8 strengthened beams (4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of glass fiber sheets and the existence of U-shaped band, etc. The maximum load was increased by 48% and 34%, and the flexural rigidity by 920% and 880% for NU-beam and U-beam, respectively, compared with those of the control beam. The ductility ratios were 1.43$\sim$2.60 for NU-beam and U-beam. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The experimental and analytical results were well agreed.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

The Effect of Compression Ratio on the Fiber Orientation During Compression Molding of Short-fiber Reinforced Composites

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.258-262
    • /
    • 2007
  • 단섬유강화 고분자 복합재료의 고온압축 프레스 성형 시 유리섬유의 유동을 지배하는 인자인 유리섬유와 모재의 유동성에 관하여 연구하기 위하여 ?h트 스트랜드의 교차각도를 $30^{\circ},\;45^{\circ},\;60^{\circ}$로 배향하여 모재와 적층시킨 다음 열압축프레스를 사용하여 1차로 시트를 제작하고, 이 제작된 시트를 가열로로 가열하여 열압축프레스로 2차 고온압축 프레스 성형한다. 여기서, 압축속도와 압축비를 변화시켰을 때 발생되는 유리섬유의 배향에 관한 실험결과를 고찰한다.

Pseudo-Ductile Hybrid FRP Sheet for Strengthening Reinforced Concrete Beams (유사연성 하이브리드 FRP 시트를 이용한 RC 보의 휨 보강)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.239-247
    • /
    • 2008
  • Use of both carbon fiber (CF) and glass fiber (GF) at the same time to strengthen existing flexural members was exploited. Using a proper volumetric GF / CF ratio, the CF can rupture first followed by subsequent rupture of GF at higher stress and strain showing a pseudo-ductile behavior. A theoretical study indicated that the ratio is 4.62 : 1 and higher where the pseudoductile effect can be shown. Flexural tests of plain concrete beams strengthened using fibers were first carried out. Hybrid FRP sheet using 8.8 : 1 ratio was then fabricated and the sheet was used to strengthen reinforced concrete beams. The RC beams strengthened using 1-ply and 2-ply hybrid sheets both revealed increased strength over a non-strengthened beam and ductile flexural behavior. A comparable beam strengthened using CF also showed increased strength but with limited ductility.

Economic Analysis Considering Traffic Characteristics for the Glass Fiber Sheet Reinforced Asphalt Pavement (교통 특성에 따른 유리섬유 시트 보강 아스팔트포장의 경제성 분석)

  • Cho, Sam-Deok;Lee, Dae-Young;Han, Sang-Ky;Kim, Nam-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2002
  • Even though a lot of laboratory and field tests for asphalt pavements using geosynthetics have been conducted recently, any rational and systematic analysis for the economic efficiency of the asphalt pavement systems reinforced by using geosynthetics has not been proposed yet. In this study, the economic analysis considering the traffic characteristics for the glass fiber sheet reinforced asphalt pavement was performed using the Life Cycle Cost Analysis(LCCA) which is commonly used for the economic analysis technique. The economic efficiency for the glass fiber sheet reinforcement and the traffic characteristics was examined by applying the test results from the literature review to the economic analysis model.

  • PDF

Experimental Investigation of the Shear Behavior of RC Beams Strengthened with Glass Fiber-Steel Composite Plate(GSP) (유리섬유-강판 복합재료(GSP)로 보강된 RC 보의 전단거동에 관한 실험적 연구)

  • Jang, Jun-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.130-140
    • /
    • 2007
  • Fiber-sheet and steel-plate strengthening methods have been mainly used for strengthening the RC structures. However, recently the application of these two methods have dramatically decreased due to premature debonding failure between concrete surface and fiber-sheet and heavy self-weight of steel-plate. This article presents experimental results of shear behavior in RC beams strengthened with GSP(Glass fiber-Steel composite Plate). The thin steel plate in GSP makes usage of the anchoring system possible, which could delay or prevent the premature debonding failure. Three reference beams and 60 strengthened beams with GSP were tested. The experimental results showed that strengthened beams with GSP considerably increased in shear capacity compared with the reference beams.

Optimum Combination of Carbon and Glass Fiber Composite to Obtain the Hybrid Effect (하이브리드 효과를 주는 탄소섬유와 유리섬유의 최적 조합비)

  • Song, Hyung-Soo;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • Using combinations of carbon and glass fiber composites normally used for strengthening of concrete structures, the hybrid effect from strengthening concrete structures using the composite is studied. To produce the hybrid effects, the specimens were made with optimum proportions of carbon fibers with glass fibers. Then, direct tensile tests were conducted on the hybrid FRP (fiber reinforced polymer) specimens. Unlike the woven fiber sheet currently used in construction sites, the FRP specimens have to be directly combined with the fibers, which make the work very complicated. Therefore, direct tensile test specimens manufacturing method based on the combination of high-tension carbon fibers and E-type glass fibers was proposed and the effects of hybridization is studied through the direct tensile test. By comparing the ductility index, the modulus of elasticity, and the stress-strain curves of the specimens, the most optimum glass to carbon fiber combination ratio for the hybrid FRP was found to be 9 to 1 with ductile K-type epoxy. The study results are discussed in detail in the paper.

Bond Capacity of Pseudo-Ductile FRP Hybrid Sheet to Strengthen RC Members (철근콘크리트 부재 보강용 유사연성 FRP 하이브리드 시트의 부착 특성)

  • Yoon, Hye-Sun;Lee, Jung-Mi;Lee, Chin-Yong;Choi, Dong-Uk;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • 12 concrete blocks, on which hybrid fibrous sheets (carbon fiber and glass fiber) had been bonded, were subjected to tensile load in order to estimate properties of the bonded interface. the sheet length was varied by 100mm, 200mm and 400mm. It was found that more than 150mm bond length is required to achieve the maximum bearing capacity of the interface. In this study, maximum bond stress $\tau_{F,max}$, ultimate slip $S_{FU}$ of the interface were estimated $\tau_{F,max}$=3.0MPa and $S_{FU}$= 0.175mm, respectively.