• Title/Summary/Keyword: 유리섬유강화복합재료

Search Result 183, Processing Time 0.037 seconds

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Son, C.Y.;Byun, H.I.;Paik, J.S.;Shin, J.Y.;Lee, J.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.846-851
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S(Wind turbine System) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program (ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer. For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

  • PDF

Axial Crush and Energy Absorption Characteristics of Aluminum/GFRP Hybird Square Tubes (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주;신금철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.208-219
    • /
    • 2000
  • In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tube. Glass/Epoxy prepregs were wrapped around an aluminum tube and co-cured. The failure of the hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to the maximum of 33% in comparison with the aluminum tube. Effective energy absorption is possible for an inner aluminum tube because a wrapped composite tube constrains the deflection of an aluminum tube. The failure of a hybrid composite tube was stable without trigger mechanism because the inner aluminum tube could play the role of the crack initiator and controller. Mean crushing load could be calculated by modifying the plastic hinge collapse model for hybrid materials. The predicted results by this analytical model showed good agreement with the experimental results. It can be said that Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure because this hybrid tube shows effective energy absorption, easy production, and simple application capability for RTM process.

  • PDF

A Study on the Dielectric Properties of Glass Fiber-Reinforced Plastic Composites (유리 섬유 강화 복합재료의 유전 특성에 관한 연구)

  • Lee, B.S.;Whang, M.W.;Kim, J.S.;Cho, G.S.;Yuk, J.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1615-1617
    • /
    • 1996
  • In this study, epoxidized bisphenolic resins laminated with glass fiber mat(GFRP) are ivestigated on surface, bulk aspect and dielectric constant(${\varepsilon}'$ and ${\varepsilon}''$) vs. frequency characteristics with temperature. The investigation shows the different characteristics accordig to the attachments of fiber surface, filler content, matrix properties, and the others. Especially, dielectric properties of this sample are highly increased above $100^{\circ}C$ and decreased with the rise of frequency. There is a resonance at the high frequency region ($1MHz{\sim}10MHz$). So, dielectric properties show the shift with frequency and temperature. Dielectric properties of EGL 10 are higher than those of EGL 40 with the frequency. Generally, dielectric properties of EGL 10 are more unstable than those of EGL 40 on the shift of frequency and temperature.

  • PDF

Mechanical Properties of GMT-Sheet on Press joined Molding (프레스 접합성형 GMT-Sheet의 기계적 성질)

  • Kim, Hyuk;Choi, Yu-Sung;Lee, Dong-Ki;Han, Gil-Young;Kim, Yi-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.553-553
    • /
    • 2000
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and joining problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. h this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this ; joining efficiency of of GMT-Sheet, increases as lap joint length L increases. Increase of compression ratio causes decrease of joining efficiency after of GMT-Sheet joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We has better design the structure so as not to occur to stress centralizatien on the joining part.

  • PDF

Effect of Molding Condition on Mechanical properties during Joining of GMT-Sheet (GMT-Sheet의 접합에 있어서 기계적 성질에 미치는 성형조건의 영향)

  • Kim, H.;Choi, Y.S.;Seo, J.;Han, G.Y.;Lee, D.G.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.111-119
    • /
    • 2001
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. In this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this; joining efficiency of GMT-Sheet, increases as lap joint length L increases. Increase of compression ratio causes decrease of joining efficiency after of GMT-Sheet joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We has better design the structure so as not to occur to stress centralization on the joining part.

  • PDF

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Paik, J.S.;Lee, K.S.;Park, J.V.;Lee, J.T.;Son, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

Interfacial and Mechanical Properties of MGF Reinforced p-DCPD Composites with Surface Treatments (MGF 표면처리에 따른 p-DCPD 복합재료의 계면 및 기계적 특성 연구)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Ha, Jung-Chan;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • p-DCPD (poly dicyclopentadiene) is the resin that the versatile mechanical properties can be changeable via the control of inner monomer and catalysts. In this work, to improve the strength of composites, surface treated MGF (milled glass fiber) was used as an reinforcement in p-DCPD by molybdenum (Mo) catalyst matrix. The optimum concentration of surface treatment was obtained and the cohesion of MGF themselves increased with concentration. In case of 0.2 wt% silane concentration, the maximized mechanical properties of MGF/p-DCPD composite exhibited because of minimized MGF cohesion. When butyl silane showing minimizing cohesion was used as the optimized alkyl length, high tensile and flexure strength exhibited due to the steric hindrance effect among MGFs. Mechanical and their fractured surfaces of MGF/p-DCPD composites was compared for 4 different chemical functional groups. Norbornene functional groups containing similar chemical structure to DCPD matrix exhibited higher interfacial adhesion between MGFs and DCPD matrix.

Comparison of Mechanical and Interfacial Properties on Chemical Structures of Acrylic and Epoxy Adhesives (아크릴 및 에폭시 접착제의 화학적 구조에 따른 유리섬유 복합재료의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Choi, Jin-Yeong;Kwon, Dong-Jun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • An adhesive can be used to connect two different materials in structures. In comparing with other connecting methods, such as bolt, rivet, and hot melting, the adhesive does not need to use them. It leads to reduce the weight and decrease the stress concentration along the connecting line. This work studied the comparison of mechanical and interfacial properties of commonly-used two adhesives, acrylic type and bisphenol-A epoxy type. Tensile and flexural strength of neat adhesives were also compared. Lap shear test of two adhesives was deduced from the measurement of tensile and fatigue tests. After testing, the failure patterns of adhesive surfaces were observed by a microscope. Tensile strength and mechanical fatigue resistance at using bisphenol-A epoxy adhesive were better than acrylic adhesive. Also adding CNT reinforcement in epoxy adhesive can anticipate mechanical improvement.

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.