• Title/Summary/Keyword: 유류 오염

Search Result 526, Processing Time 0.023 seconds

The Development of Monitoring Method of Attached Micro-algae Using Artificial Substrates in Coastal Water - Ecological Risk Assessments for Oil Pollutant - (연안해역에서 인공부착기질을 이용한 부착미세조류 모니터링기법 - 유류오염의 생태위해성 평가적용 -)

  • Baek, Seung-Ho;Son, Moon-Ho;Jung, Seung-Won;Kang, Jung-Hoon;Kim, Young-Ok;Shim, Won-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2012
  • Spills of $M/V$ Hebei Spirit on $7^{th}$ December 2007 caused a seriously damage to the ecosystem of Korean coast. Of these, microbial communities (i.e., attached benthic micro-algae) were reported to be sentive to the environmental change so it can be used for ecological risk assessment. Our experiment was designed to examine the ecological risk assessments for oil pollutant using benthic attached algal community on the artificial substrates of acrylic plates. Field monitoring in the culture system was conducted in Jangmok Bay. The abundances of attached micro-algae on artificial substrates gradually increased with increasing of sampling times. Among them, diatoms were the most important colonizer of coastal water, with the genera $Cylindrotheca$ and $Navicular$ most abundant. In particular, developed the culture system has correctly measured qualitative and quantitative abundance of attached micro-algae because same acrylic plates as artificial substrates were used. Thus, this culture system may be directly applied to the ecological risk experiments of microbial community structure from oil pollutants.

A Study on BTEX Removal Efficiency for Variation of Moistures by Microwave Process (유류오염토의 마이크로파 처리 시 토양의 함수율 변화에 따른 BTEX 제거특성에 관한 연구)

  • Ha, Sang-An;Yeom, Hae-Kyong;Yu, Mi-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.65-71
    • /
    • 2007
  • This study has been focused on an application of microwave pre-treatment of soil contaminated with volatile organic chemicals, and BTEX(benzene, toluene, ethylene, xylene). Microwave experiments were carried out under different power conditions (2 kW, 4 kW) using different moisture contents and BTEX concentration. According to these results of this study, the most BTEX removal efficiency was with 20% moisture contents regardless of electric power. The result show that 2kW was determined to the optimum electric power at $10{\sim}30%$ moisture contents, but the optimum power was 4 kW at 50% of moisture content.

Sensitivity Analysis of Hydrodynamic and Reaction Parameters in Gasoline Transport Conceptual Aquifer Model Based on Hydrogeological Characteristics of Korea (국내 대수층 특성을 반영한 포화대 내 유류오염물질 거동 개념 모델에서 수리동역학적 및 반응 입력인자 민감도 평가)

  • Joo, Jin Chul;Lee, Dong Hwi;Moon, Hee Sun;Chang, Sun Woo;Lee, Soo-Hyoung;Lee, Eunhee;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.37-52
    • /
    • 2020
  • Sensitivity analysis of hydrodynamic and reaction parameters in conceptual model reflecting aquifer characteristics of Korea was performed to evaluate the uncertainty in the predicted concentrations. Among the hydrodynamic input parameters, both hydraulic conductivity (Kx) and hydraulic gradient (I) affected transport behaviors of contaminants, and resulted in same convergence concentrations with continuous injections of contaminant. However, longitudinal dispervisity (αL) affected both transport behaviors and the convergence concentrations of contaminants. Compared to the hydrodynamic parameters, growth kinetic and degradation parameters (μm & Kc) more significantly affected both transport behaviors and the convergence concentrations of contaminants, indicating those parameters had higher sensitivity indices causing the uncertainties of model predictions. Considering that the sensitivity indices of both hydrodynamic and reaction parameters were a function of transport distance of groundwater, the parameters with higher sensitivity indices, a priori, need to be investigated using conceptual model reflecting site-specific aquifer characteristics before field investigation. After determining the parameters with higher sensitivity indices, the detail field investigations for the selected hydrodynamic and reaction parameters were warranted to reduce the uncertainties of model predictions.

A Study on Allocation of Additional RFID Reader Sites for the Weekly No Driving Day Program; in Daegu Metropolitan City (승용차요일제 RFID 리더기 추가설치를 위한 적정지점 선정에 관한 연구 -대구광역시를 중심으로-)

  • Heo, Kyung-Jin;Seo, Su-Young
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.85-94
    • /
    • 2010
  • This study presented a method to allocate RFID reader sites for the weekly no driving day program. In resent years, three metropolitan cities begin to operate the system to resolve the traffic jam, air pollution, and oil cost, which is expected to be operated across the country in a few years. In this regard, the accurate verification of the observance of the cars which are participated in the system is needed so that the more benefits are rewarded to observing participants but not violating ones. Thus, this study distinguished road sections where the system of the Daegu metropolitan city cannot determine the observance of the participated cars when the cars detour the RFID readers by employing a set of data from the traffic census, digital maps, and terrestrial photographs of the superstructures on the roads. Then, the appropriate sites for additional RFID readers were determined based on those sections in the road network and the types of the road superstructures.

Visualization and Quantification of Dissolution of Dense Nonaqueous Phase Liquid Entrapped in Porous Media (다공성 매체내 유기용매(DNAPL)의 용해현상 시각화 및 정량화 연구)

  • Ju, Byung-Kyu;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Oils and chlorinated solvents leaking to the subsurface are entrapped in the soil pore and these are called as nonaqueous phase liquids (NAPL). NAPL entrapped in porous media acts as a continuous source for surface and ground water contamination. This study visualized dissolution of trichloroethylene (TCE) entrapped in porous media and quantified the velocity of TCE dissolution using an image analysis technique. As the water velocity increased, the level of dissolution increased. The results imply that a TCE contaminated region having a high infiltration rate and groundwater velocity may result in severe groundwater contamination. Microscopic images of TCE entrapped in porous media showed that TCE present in the preferential flow paths was easily dissoluted into the water phase. However, TCE present in the stagnant flow region was visualized for long time. The results imply that TCE would be still present in the soil if TCE is detected in goundwater.

  • PDF

TPH Removal of Oil-Contaminated Soil by Hot Air Sparging Process (고온 공기분사공정에 의한 유류오염대수층의 TPH 제거)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.665-675
    • /
    • 2007
  • In-situ Air Sparging (IAS, AS) is a remediation technique in which organic contaminants are volatilized from saturated zone to unsaturated layer. This study focuses on the removal and interaction of Volatile Organic Compounds (VOCs) and $CO_2$, and Total Petroleum Hydrocarbon (TPH) in saturated and unsaturated, and air space zone on the unsaturated soil surface. Soil sparging temperature of hot air has risen to $34.9{\pm}2.7^{\circ}C$ from $23.0{\pm}1.9^{\circ}C$ for 36 days. At the diffusing point, fluid TPH concentrations were reduced to 78.7% of the initial concentration in saturated zone when hot air was sparged. The TPH concentrations were decreased to 66.1% for room temperature air sparging. The amount of VOCs for hot air sparging system, in air space, was approximately 26% larger than constant air sparging system. The amount of $CO_2$ was 4,555 mg (in unsaturated zone) and 4,419 mg (in air space) when hot air was sparged was 3,015 mg (in unsaturated zone) and 3,634 mg (in air space) for room air temperature in the $CO_2$ amount. The removals of VOCs and biodegradable $CO_2$ through the hot air sparging system (modified SVE) were more effective than the room temperature air sparging. The regression equation were $Y=976.4e^{-0.015{\cdot}X}$, $R^2=0.98$ (hot air sparging) and $Y=1055e^{-0.028{\cdot}X}$, $R^2=0.90$ (room temperaure air sparging). Estimated remediation time was approximately 500 days, if final saturated soil TPH concentration was set to 1.2 mg/L application of tail effect.

The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis (유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가)

  • Cho, Chang-Hwan;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.

Bioremediation of Petroleum Contaminated Soils by Pilot Scale Biopile (Pilot 규모 biopile에 의한 유류오염토양의 정화)

  • Yoon, Jeong Ki;Noh, Hoe-Jung;Kim, Hyuk;Kim, Jong Ha;Kim, Tae Seung;Ko, Sung Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.10-18
    • /
    • 2013
  • The pilot scale biopile system was designed and operated for evaluation of bioremediation efficiency for petroleum contaminated soil. The pilot scale biopile consisted of biopile dome, aeration system and monitoring system and two biopiles were operated with nutrients and inoculum for more 100 days. The test pile A and B were analyzed with regard to pH, total carbon contents, water contents, nutrients (N, P) and TPH. The initial TPH concentrations for pile A and pile B were about 10,000 mg/kg and 2,300 mg/kg, respectively. After 100 days, the TPH contents decreased about 70% in the pile A and 30% in the pile B. Also, n-$C_{17}$/pristane and n-$C_{18}$/phytane ratios in all pile were significantly changed. The microbial densities in the pile A was increased by approximately $10^7$ CFU/g-soil~$10^8$ CFU/g-soil, but there was almost no changed in the pile B. The average biodegradation rates were calculated about 66.8 mg/kg-day in the pile A and 10.9 mg/kg-day in the pile B. Over the course of operation period, pile temperature was considered the major limiting factor for the efficiency of all biopiles.

Field Applicability Study of Landfarming for Petroleum Hydrocarbons Contaminated Soils (토양 경작법을 이용한 유류오염토양 정화사업 타당성 연구)

  • Jho, Eun Hea;Ryu, Hyerim;Shin, Doyun;Kim, Young-Jin;Choi, Yong Ju;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • The landfarming treatment for the remediation of the petroleum contaminated soil at the returned U.S. Military bases was investigated in this study. Specifically, the bioaugmentation performance using various commercially available petroleum-degrading bacteria was evaluated and the directions for enhancing the performance of the landfarming treatment were suggested. The environmental factors of the soils at the returned U.S. Military bases chosen for remediation indicate that the landfarming treatment can be used as the remediation technique; however, the addition of nitrogen or phosphorus is required. The lab-scale landfarming treatment tests using the model soil and the site soil showed that the degradation efficiency was greater with the model soil than the site soil and that the treatment performance was not affected by the number of bacteria present in the soil in the range of $10^6-10^{12}$ CFU/g. These results suggest that the successful landfarming treatment depends on the petroleum degradability of bacteria used and the environmental conditions during the treatment rather than the number of petroleum-degrading bacteria used.

A Study on the Refining Performance Improvement of Marine Sludge Fuel Oil(I) (for the temperature and pressure effects in metal filtering element) (선박 슬러지유의 정유성능 향상에 관한 연구(I)(금속여과망의 유압력 및 유온의 영향에 대해서))

  • 한원희;하만식;이진열
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 2003
  • As ship's fuel oil recently becomes viscous and the amount of sludge increases, many researches and studies are underway to process the sludge onboard the ship and to recycle it as a fuel for ship's boiler. Of many researches, especially ultrasonic emulsifier to break the particle of sludge into fine pieces is recognized as a most possible recycling device. In this regards, the author investigates the property change of sludge's temperature and pressure at the early stage of the study of ultrasonic emulsifier. This study can be used as a useful dora to determine the proper temperature and pressure to inject the processed sludge in the boiler injector and the results can also be comparable dora with the experimental data by ultrasonic emulsifier. In addition, the results will be a fundamental data to study the filtering efficiency of the sludge particle broken by temperature and pressure. It is expected that this study ultimately play a role to prevent marine oil pollution as the sludge is recycled onboard the ship and used as a fuel for boiler.

  • PDF