• Title/Summary/Keyword: 유류화원

Search Result 3, Processing Time 0.021 seconds

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.171-174
    • /
    • 2010
  • 도로터널에서의 미분무수 소화시스템의 적용 가능성을 검토하기 위해 실물 화재 실험을 수행하였다. 적용된 화원은 실물 승용차 화재와 유류화재를 모사한 화원면적 $1.4m^2$의 heptane pool 화재이며, 기존 도로터널에 설치된 저압 물분무 시스템과 고압 미분부수 소화시스템과의 냉각효과 비교실험을 수행하였다. 도로터널 내의 환기조건을 구현하기 위해 실물모형 터널의 한 편에 터널 유속(0.9~3.8 m/sec 범위) 발생장치를 설치하였으며, 화원에서 하류 방향으로 터널 내 온도분포를 측정하였다. 실험 결과 1/5의 유량을 사용하는 고압 미분무수 소화시스템은 저압 물분무 시스템과 동등한 수준의 냉각효과를 보였다.

  • PDF

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2011
  • The full-scale experiments are carried out to investigate the fire suppression characteristics of water-based fire fighting systems in a road tunnel. Applied systems are the low-pressure water spray system at 3.5 bar and the high-pressure water mist system at 60 bar. The water flow rate of the high-pressure system is one sixth only of the water spray system. A passenger car and a heptane fuel pan with area of $1.4m^2$ are used as fire sources. A blower system is installed at the tunnel exit to realize the longitudinal ventilation conditions (0.9~3.8 m/s) in the tunnel. Temperatures from the fire source to the down-stream direction are measured by K-type thermocouple trees. The experimental results show that the cooling effect of the high pressure water mist system in the test conditions were equivalent to that of the low pressure water spray system for B-class fire.

ANALYSIS OF STEADY FIRE-DRIVEN FLUID FLOW FOR RAILWAY TUNNEL BY DIFFERENT VELOCITY CONDITIONS AT THE END OF TUNNEL (종단부 유속조건 변화에 따른 철도터널 내 정상상태 화재유동해석)

  • Lee, D.C.;Lee, D.H.;Jung, W.S.;Park, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.208-213
    • /
    • 2010
  • In this study CFD(Computational Fluid Dynamics) analysis of the steady fire-driven fuid flow for the performance test of ventilation at railway tunnel between Heuksok and Nodeul Station from Seoul Metro 9 is performed. There were fans with exhaust and intake modes and each was installed at the middle and both ends of the tunnel. For this test, the pool fire source of methyl alcohol with 1.5MW and smoke generators were installed between the middle of tunnel and Heuksok Station. In this test, the smoke behavior from natural convection was observed for 10 minutes from the ignition of pool fire and then fans with intake-modes at both sides of Heuksok effect of fan-on with intake mode located in the opposite side of the tunnel nearby Heuksok Station on fire-driven fluid flow is studied on when the boundary conditions of fan-on at the tunnel between Heuksok and Nodeul Station are the same as test. FLUENT, a commercial CFD code, is used for this analysis.

  • PDF