• Title/Summary/Keyword: 유로 형상

Search Result 559, Processing Time 0.03 seconds

Relationship Between the Catchment Characteristics and the Discharge-Sediment Discharge Correlations (유역 특성인자와 지점 유량-유사량 관계식의 상관성 분석)

  • Youn, Sunghyun;Paik, Kyungrock;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.411-411
    • /
    • 2016
  • 본 연구에서는 유역 특성 인자와 지점 유량-유사량 관계식의 상관성 분석을 하였다. 대상 지점은 군남, 청미(이상 한강 유역), 향석, 동문, 선산, 동촌, 개진2(이상 낙동강 유역), 회덕, 합강(이상 금강 유역), 선암, 남평(이상 영산강 유역)을 선정하였다. 대상 지점의 상류에 댐이 있을 경우 유량-유사량 관계식이 왜곡될 가능성이 있기 때문에 이상 지점은 상류에 댐이 없는 곳으로 선정되었다. 이들 지점을 출구로 하는 유역을 정의하고 각 유역의 형상계수, 수면 폭, 단면적, 하천 총 길이 등을 조사하여 유량-유사량 관계식과 비교하였다. 분석 결과 수면 폭, 단면적, 하천 총 길이가 증가할수록 관계식의 계수는 감소하는 경향을 나타냈고 지수는 증가하는 형태를 나타내는 것을 알 수 있었다. 한편, 형상계수는 뚜렷한 상관관계를 나타내지 않았다. 유량-유사량의 경향성을 파악하기 위해 기존의 측정성과와 비교 분석하고자 하였다. 비교 분석한 결과 대부분 유사한 특성과 경향성을 나타내었으나 일부 다른 특성을 보인 지점도 존재하였다. 본 연구는 특정 지점의 유량-유사량 관계가 유역의 지형 특성에 영향을 받는 다는 것을 시사하는 초기 연구로 향후 추가 연구를 통해 그 영향을 규명할 필요성을 보여준다.

  • PDF

Development of an Algorithm for Automatic Extraction of Lower Body Landmarks Using Grasshopper Programming Language (Grasshopper 프로그래밍 기반 3D 인체형상의 하반신 기준점 자동탐색 알고리즘 설계)

  • Eun Joo Ryu;Hwa Kyung Song
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.171-190
    • /
    • 2023
  • This study aims to develop algorithms for automatic extraction landmarks from the lower body of women aged 20-54 using the Grasshopper programming language, based on 3D scan data in the 8th SizeKorea dataset. First, 11 landmarks were defined using the morphological features of 3D body surfaces and clothing applications, from which automatic landmark extraction algorithms were developed. To verify the accuracy of the algorithm, this study developed an additional algorithm that could automatically measure 16 items, and algorithm-derived measurements and SizeKorea measurements were compared using paired t-test analysis. The statistical differences between the scan-derived measurements and the SizeKorea measurements were compared, with an allowable tolerance of ISO 20685-1:2018. This study found that the algorithm successfully identified most items except for the crotch point and gluteal fold point. In the case of landmarks with significant differences, the algorithms were modified. This study was significant because scan editing, landmark search, and measurement extraction were successfully performed in one interface, and the developed algorithm has a high efficiency and strong adaptability.

Estimation and Analysis of Wave Spectrum Parameter using HeMOSU-2 Observation Data (HeMOSU-2 관측 자료를 이용한 파랑 스펙트럼 매개변수 추정 및 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Kim, Ji-Young;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.217-225
    • /
    • 2021
  • In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γopt) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γopt) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γopt) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, -1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = -3.86α.

CHANGES IN STAGNATION REGION AND RESIDENCE TIME OF COOLING WATER FOR VARIOUS FLOW CHANNEL GEOMETRY OF WATER COOLING GRATE (수냉식 화격자 유로 형상에 따른 냉각수의 정체 영역 및 체류 시간 변화)

  • Song, D.K.;Kim, S.B.;Park, D.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • Waste-to-energy facilities including incinerators are known as an efficient method to reduce wastes. In waste-to-energy facilities, more efficient cooling system is still needed for grates as the energy density of waste increased. For better cooling performance with the water-cooled grates, optimal design of cooling water pathways is highly beneficial. We performed numerical investigation on fluid flow and residence time of cooling water with change of the geometry of the cooling water pathway. With addition of round shaped guide vanes in the water pathway, the maximum residence time of flow is reduced(from 4.3 sec. to 2.4 sec.), but there is no significant difference in pressure drop between inlet and outlet, and average residence time at the outlet. Furthermore the flow stagnation region moves to the outlet, as the position of the round shaped guide vanes is located to the neck point of pathways.

An Experimental Study on the Metal Surface Temperature and Heat Transfer by Improving Gasoline Engine Cooling Passages (가솔린엔진의 냉각계 유로 변경을 통한 금속면 온도 및 전열에 관한 실험적 연구)

  • 이재헌;류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Metal surface temperatures around the combustion chamber in a gasoline engine directly affect thermal durability and performance of the engine. Metal surface temperatures are influenced by many cooling factors such as drilled water passage, deflector, combustion chamber wall thickness, pillar, and coolant flow pattern. The object of this study is to learn how the coolant passages and coolant flow pattern in an engine influence to the engine metal surface temperature at engine full load and speed. From the test result, it is suggested a plan to reinforce the engine stiffness and to reduce the thermal stress simultaneously. Also, approaches are introduced to reduce the thermal load on the engine by adjusting the discharging direction from the water pump and by optimizing the water transfer holes in the cylinder head gasket. These methods and the optimized engine cooling system, which were suggested in this paper, were adapted for an engine in progress to eliminate the exhaust valve seat wear.

Shape Optimization of a Rotating Two-Pass Duct with a Guide Vane in the Turning Region (회전하는 냉각유로의 곡관부에 부착된 가이드 베인의 형상 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.66-76
    • /
    • 2011
  • The heat transfer and pressure loss characteristics of a rotating two-pass channel with a guide vane in the turning region have been studied using three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis, and the shape of the guide vane has been optimized using surrogate modeling optimization technique. For the optimization, thickness, location and angle of the guide vanes have been selected as design variables. The objective function has been defined as a linear combination of the heat transfer and the friction loss related terms with a weighting factor. Latin hypercube sampling has been applied to determine the design points as design of experiments. A weighted-average surrogate model, PBA has been used as the surrogate model. The guide vane in the turning region does not influence the heat transfer in the first passage upstream of the turning region, but enhances largely the heat transfer in the turning region and the second passage. In an example of the optimization, the objective function has been increased by 13.6%.

Target Observability Analysis of Time-to-go Polynomial Guidance Law (Time-to-go 다항식 유도 법칙의 표적 가관측성 분석)

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.664-672
    • /
    • 2010
  • This paper provides the target observability analysis of time-to-go polynomial guidance law with bearing-only measurement. In this study, a direct approach is used to analyze the target observability. Since the observability condition of a constant-velocity target is given by the function of LOS angle only, the target observability characteristic is determined by substituting the closed form solution of LOS angle to the observability condition directly. The analysis results show that the target observability is depended on the choice of guidance gain, initial intercept condition and guidance command shape. After that this mathematical analysis result is evaluated and demonstrated by number of simulation.

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jong-Jae;Seo, Jong-Chul;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.325-330
    • /
    • 2011
  • A rotor overlap technique was adapted to improve the performance of a axial turbine. The technique secured sufficient flow passage by additional height at the rotor tip and hub. especially in a supersonic turbine, the technique reduced the chance of chocking in the rotor passage, and made to be satisfied the design pressure ratio. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, a optimization technique was appled to maximize the improvement of the turbine performance. An approximate optimization method was used for the investigation to secure the computational efficiency. The design variables was shape factors of a rotor overlap. Results indicated that a significant improvement in turbine performance can be achieved through the optimization of the rotor overlap.

  • PDF

A Study on the Improvement of Flow Characteristics of the Glove Valve for Compressible Fluid (압축성 유체용 글로브 밸브의 유량특성 향상에 관한 연구)

  • Bae, Ji Won;Chung, Woo Young;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2019
  • Glove valves are used for various purposes in the process control field because such valves enable easy control of temperature and pressure. However, such valves are associated with significant loss of pressure and also have the disadvantage of complicating the shape of the cage or plug to facilitate linear flow rate change. In this paper, the shape of the plug, one of the valve flow control elements, was designed to improve the flow characteristics of the glove valve, and then CFD analysis was performed using compressible fluid. The numerical analysis results of the glove valve were analyzed according to the opening ratio and the pressure ratio of the valve. From these results, it was found that the proper notch on the side of the plug contributed to reducing the energy loss of the fluid through the valve and improving the linearity of the valve.

Internal Flow Characteristics of a Francis Hydro Turbine Model by Internal Flow Passage Shapes

  • Chen, Zhenmu;Wei, Qingsheng;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.19-25
    • /
    • 2015
  • As a core component of a hydropower station, hydro turbines play a vital role in the integration of a power station. Research on the technology of hydro turbine is continuously increasing with the development of water electricity. On the basis of one-dimensional loss analysis, for three-dimension design, there are a lot of dimension of the internal flow passage shapes that are determined by experience. Therefore, the effect of the internal flow passage shapes on the performance and internal flow characteristics of a Francis hydro turbine model is investigated in this study. In this study, the small curvature of runner blade trailing edge shape is good for improving the efficiency of Francis turbine. The straight stay vane leading edge is good for suppressing the secondary flow. Moreover, suitable tongue passage shape and stay vane number improve the performance of the turbine considerably.