• Title/Summary/Keyword: 유동 재순환

Search Result 299, Processing Time 0.026 seconds

Quantitative Analysis of Rietveld Method Minerals by Sintering Temperature of Cement Clinkers with Fly Ash (리트벨트법에 의한 석탄재를 적용한 시멘트 클링커의 소성 온도별 광물 정량분석)

  • Yoo, Dong-Woo;Im, Young-Jin;Park, Tae-Gyun;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.514-519
    • /
    • 2020
  • In this study, cement clinkers were sintered at each temperature by replacing some of the clay components of cement clinkers with coal materials. The mineral phase change of sintered cement clinker was quantitatively analyzed by XRD-Rietveld method. As the sintering temperature of cement clinker increased, the amount of belite decreased, the amount of alite increased, and the amount of free-CaO decreased. The form of alite and belite could be distinguished at sintering temperature of 1450℃ or higher. The crystal size was greatly increased at 1500℃ sintering. It was confirmed that the excessive sintering was progressed. Free-CaO decreased with the increase of sintering temperature. At 1450 ℃ or higher, it was less than 0.5%. In 1450℃ or greater, it is determined that enough sintering is included. Therefore, the application of fly ash as a raw material of cement clinker was judged to be usable as a source of chemical components of alumina and iron raw materials.

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates (부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능)

  • Sang-Min Jeon;Young-Sang Kim;Ba-Huu Dinh;Jin-Gyu Han;Yong-Sun Ryu;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.

Numerical Analysis for the Flow Field past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지니는 유동장에 대한 수치해석)

  • Kim, Yeon-Soo;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.499-505
    • /
    • 2001
  • The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of $2{\times}10^4$. The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (${\theta}$) against the wall, the interval(L) between orifices, the relative angle of rotation(${\alpha}$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hole affected the pressure drop and the flow field a lot, But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed.

  • PDF

Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant (정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석)

  • Song K. S.;Oh S. Y.;Park Y. B.
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • The present study is developed device that effectively mixes raw water and chemicals by using the residual head of fluid in the front pipe of flocculation basin, and performed non-dimensional analysis and presented design standard to apply to water plants that have different equipment capacity. The variables for design are a proper ratio between an outer diameter of deflector and a diameter of pipe, a distance between deflector and orifice and a determination of orifice diameter for an optimal mixing. Numerical study has analyzed flow field on a basis of turbulent intensity in an orifice downstream. As Reynolds number of In-Line Orifice was increased from identical design variable, the turbulent intensity of pipe center was no changed almost.

Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant (정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석)

  • Song K. S.;Oh S. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • We used In-line orifice mixer for efficient chemicals mixing in water treatment. The method of using In-line orifice mixer has been already proved the improvement of water treatment efficiency. Code of computational fluid dynamics for numerical analysis was performed using FLUENT, a commercial code. As variable for exactly standardizing, a proper ratio between an outer diameter of deflector and a diameter of pipe, the distance between deflector and orifice, a determination of orifice diameter fur an optimal mixing, a distance between injection nozzle's position and cone, Numerical study has been performed for optimal standard and analyzed flow field on a basis of turbulent intensity in an orifice downstream.

  • PDF

Flow Analysis in an Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;박상규;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1308-1316
    • /
    • 2001
  • This paper described a numerical investigation performed to understand better the effects of flow parameters in an entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG $k-\varepsilon$ model for turbulent flow. The calculation parameters were the ratio of primary and secondary jet velocity and the height difference between primary and secondary jet As the secondary jet velocity increased, the upper recirculation 3one of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet Velocity at which the size of upper and lower recirculation zone was reversed.

  • PDF

A Study on Flow and Combustion Characteristics of Flat Flame Burner (Flat Flame Burner의 유동과 연소 특성에 관한 연구)

  • Jeong, Y.K.;Kim, C.K.;Jeon, C.H.;Chang, Y.J
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.59-66
    • /
    • 2000
  • In this study, We studied flow and combustion characteristics of a Flat Flame Burner(FFB) with swirler. As swirl number increase, the streamlines is proceed close to tile and velocity is large. Blow-off limit decrease when swirl number is 1.24, but blow-off limit increase when combustion load is 6500kcal/hr. Temperature distribution is uniform in front of tile and NO formation is small at S=1.24. We expect that the radiation can be transmitted to the object and NOx will reduce because of recirculation zone

  • PDF

A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner (축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구)

  • Kim, Jong-Gyu;Kang, Min-Wook;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF

Flowfield Characteristic of a Flat Flame Burner using One Frame Double Exposure Method (단일 프레임 이중 노출법을 이용한 Flat Flame Burner의 유동장 특성에 관한 연구)

  • Jeong, Y.K.;Jeon, C.H.;Chang, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.692-697
    • /
    • 2000
  • Recently, Flat flame burners are hilighted in high-load burners. Our study contains flow field analysis of a flat flame burner. In this paper, We analyzed the direction and magnitude of the velocity in a round tile type burner with swirl angles, $10^{\circ},\;30^{\circ},\;50^{\circ}$. In the case of swirl angle $10^{\circ}$, because axial momentum is larger than radial momentum, Recirculation region was weakly developed. In the case of swirl angle $50^{\circ}$, Flow in front of the tile is distributed for radial direction. And Recirculation region is large. So, We expect that the radiation can be transmitted from tiles and the recirculation region may cause $NO_x$ reduction.

  • PDF

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Combustor (연소로 내 2차공기의 주유동 수직방향 선회분사로 인한 선회류가 스월수에 따른 가스 체류시간과 혼합 특성에 미치는 영향)

  • Park Sang-Uk;Jeon Byoung-Il;Yu Tae-U;Hwang Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.48-56
    • /
    • 2006
  • We investigated gas residence time and mixing characteristics due to various swirl numbers generated by normal injection of secondary air to a lab-scale cylinderical combustor. The residence time was estimated by measuring the temporal pressure difference which was caused by deposition of test particles on a filter media after the injection by a syringe. The mixing characteristics were evaluated by standard deviation value of test gas concentration at different measuring points. The test gas concentration was detected by a gas analyzer. The swirl number of $20{\sim}30$ for ${\theta}=5^{\circ}$ caused long residence time enough to improve mixing characteristics. Numerical calculations were also carried out to understand physical meanings of the experimental results.