• Title/Summary/Keyword: 유동 시뮬레이션

Search Result 611, Processing Time 0.028 seconds

A study on the acoustic performance of a silencer according to the change of properties of absorbing material (흡음재 물성치 변화에 따른 소음기 음향성능 연구)

  • Lee, Yongbeom;Yang, Haesang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.278-289
    • /
    • 2021
  • In this study, the acoustic performance of a dissipative silencer used in the ship with excellent performance compared to its size was predicted and analyzed using a numerical analysis method to reduce the pipe noise. To this end, the performance of the single expansion chamber-shaped silencer was verified using experimental and numerical analysis methods. The acoustic performance of the silencer was expressed using the Transmission Loss (TL), an indicator of its own performance, and the result was derived using the two-load method, which measured by changing the impedance at the end of the pipe. For the numerical analysis method, a general-purpose finite element analysis program was used, and the Delany-Bazley-Miki model with the flow resistivity of the sound absorbing material as an input parameter was applied. Finally, we compared the experimental and simulated results for each of the acoustic performances of the single expansion type and the dissipative silencer to confirm the consistency of the results, and predicted and analyzed the simulation results for four cases according to the properties of the sound absorbing material.

A Comparison of Performance on the Orthogonal and Refraction Heat Exchanger Shape in Air Ventilation System (환기시스템의 굴절 및 평판형 열교환기 형상에 따른 성능비교)

  • Hyeon, Hyeong-Ho;Jeong, Byeong-Ho;Kim, Ji-won;Lee, Kang-yeon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.281-287
    • /
    • 2019
  • Application of heat recovery system applying air supply and cexhaust ventilation device essential in energy management system for the optimum ventilation system utilization and energy saving. This is a key element of infrastructure technology for high-efficiency energy buildings, because it can save heating and cooling energy in winter and summer. In this paper, heat transfer efficiency was simulated using paper, plastic, and aluminum materials that was examined to compare heat exchanger performance under uniform flow conditions. We tested heat transfer efficiengy according to the shape of two of that, one is orthogonal and the other is refraction shape. Based on the simulation results, it is expected to contribute to the production of high performance heat exchanger with heat transfer performance and pressure loss.

Development of Integrated Computational Fluid Dynamics(CFD) Environment using Opensource Code (오픈소스 코드를 이용한 통합 전산유체역학 환경 구축)

  • Kang, Seunghoon;Son, Sungman;Oh, Se-Hong;Park, Wonman;Choi, Choengryul
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2018
  • CFD analysis is an analytical technique that applies a computer to the design and development of products across the entire industry for heat or fluid flow. This technology is used to shorten the development period and reduce costs through computerized simulation. However, the software used for CFD analysis is now required to use expensive foreign software. The Opensource CFD analysis software used in the proposed system has reliability of commercial CFD analysis software and has various user groups. However, for users who have expert knowledge, Opensource CFD software which supports only text interface environment, We have developed an environment that enables the construction of a CFD analysis environment for beginners as well as professionals. In addition, the proposed system supports the pre-processing (design and meshing) environment for CFD analysis and the environment for post-processing (result analysis & visualization), enabling the integrated CFD analysis process in one platform.

  • PDF

Changes in Fire Characteristics according to the Distance Between the Fire Source and Sidewall in a Reduced-Scale Compartment (축소 구획실에서 화원과 측벽의 거리에 따른 화재특성 변화)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Experimental and numerical studies on the fire characteristics according to the distance between the fire source and sidewall under the over-ventilated fire conditions. A 1/3 reduced ISO 9705 room was constructed and spruce wood cribs were used as fuel. Fire Dynamics Simulator (FDS) was used for fire simulations to understand the phenomenon inside the compartment. As a result, the mass loss rate and heat release rate were increased due to the thermal feedback effect of the wall in the compartment fire compared to the open fire. As the distance between the fire source and sidewall was reduced, the major fire characteristics, such as maximum mass loss rate, heat release rate, fire growth rate, temperature, and heat flux, were increased despite the limitations of air entrainment into the flame. In particular, a significant change in these physical quantities was observed for the case of a fire source against the sidewall. In addition, the vertical distribution of temperature was changed considerably due to a change in the flow structure inside the compartment according to the distance between the fire source and sidewall.

A Secure Routing Scheme for Wireless Sensor Network with a Mobile Sink (이동 싱크를 가진 무선 센서 네트워크의 안전한 라우팅 기법)

  • Kim Taekvun;Kim Sangjin;Lee Ik-Seob;Yoo Dongyoung;Oh Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.53-64
    • /
    • 2005
  • Previous secure routing protocols for wireless sensor networks assume that a sink is static. In many cases, however, a sink operated by man or vehicle is moving. A mobile sink creates a lot of technical problems such as reconfiguration of routing path exposure of sink location. and selection of secure access point node, which are not considered by many previous researches. In this paper, we propose a new secure routing scheme for solving such problems using hi-directional hash chain and delegation nodes of grid structure. This scheme provides a secure routing path and prevents attacker from recognizing the location of a mobile sink in sensor networks. This new method reduces the resource requirements compared to the cashed routing schemes. Simulation results also show that the system is secure and efficient enough.

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

Modeling and Validation of a Liquid Propellant Supply System in Steady States (액체 추진제 공급시스템의 정특성 모델링 및 검증)

  • Lee, Juyeon;Ki, Wonkeun;Huh, Hwanil;Roh, Tae-seong;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.143-154
    • /
    • 2020
  • The mathematical modeling applying experimental coefficients to a conventional model was validated through the hydraulic test for the components and the full system of a small-sized liquid rocket engine's propellant supply system. According to the simulations, pressures difference for the fluid resistance components and the pump were mainly predicted. In order to improve the modeling accuracy, the loss coefficients obtained by the empirical method were applied to the modeling. Based on the governing equation of the flow or the well known empirical equation, the method of deriving the empirical coefficients was summarized and the coefficients were presented for the commercial products used in this study. The prediction results by modeling were in good agreement with the experimental data. Through the comparison with the experimental data, the factors affecting the accuracy of the simulation were analyzed and improving methods of the accuracy was proposed.

Study on Plunging Wave Breaking near Ship Bow (선수 주위의 플런징 쇄파 연구)

  • Koo, Bon-Guk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.122-127
    • /
    • 2021
  • Flow features near the ship bow such as wave breaking, small scale phenomena have been studied using numerical methods. In this study, the bow shaped wedge was adopted which is from previous paper [1, 2] and the conditions of simulation were Re = 1.64 × 105) and Fr = 2.93. Star CCM+, one of the commercial CFD programs has been used for the simulations. Simulation results such as wave profiles near the ship bow, shape of plunging jet, air entrainment, and wave breaking process have been compared with previous experimental and numerical studies. Overall results showed good agreements with previous studies. Profiles of bow waves showed that overturning jet has been created and broken along the wedge. Plunging wave breaking has been observed along the wedge and four components of plunging wave breaking process were shown. It is confirmed that velocity near the overturing jet significantly increased during plunging wave breaking.

Multi-UAV Formation Algorithm Based on Distributed Control Using Swarm Intelligence (군집 지능을 이용한 분산 제어 기반 대형 형성 알고리즘)

  • Kim, Moon-Jung;Kim, Jeong-Hun;Kim, Hyo-Jung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.523-530
    • /
    • 2022
  • Since the Multi-UAV system for various missions is more complex than a single UAV, an efficient formation control method is required. In wide-area search mission, there is a need for a distributed control for flexible formation that has a low burden of communication and computation and enables autonomous formation between UAVs. This paper proposes a flexible formation operation method that considers the swarm formation, the bank alignment formation, and the formation movement to expand the scan area and improve search performance. The algorithm has a vibration characteristic of the second-order system for a relative distance and can design an algorithm through parameter tuning. In addition, we converted control commands to suit conventional UAV systems and demonstrated the performance of algorithms for a formation and movement of a formation through simulation.

A Study on the Simulation of Underground Acoustic Telemetry (지중 원격 음파통신 시뮬레이션 연구)

  • Shin, Younggy
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.41-45
    • /
    • 2022
  • The conventional communication method using mud flow pressure waves has a speed of 1-2 bps, so it takes a long time to communicate, making real-time control impossible. Although the sound wave communication method for improving the communication speed by 10 times or more has been commercialized, its use is limited due to its high price and there are not many application cases. In this study, the simulator corresponding to the facility was developed to develop performance similar to the actual test results. For simulating sound wave communication through a drill pipe, we proposed a governing equation that can simulate friction damping by mud and developed a numerical analysis model. The attenuation factor was corrected by comparing it with the attenuation rate of sound wave energy at the drilling site. The developed numerical analysis model was applied to the QPSK modulation type communication algorithm to confirm the excellent performance of the communication error rate of 0.04% in the ground. This is the communication performance under the condition that noise has not been mixed yet, and in order to apply it, the technology of reproducing the actual noise signal for mixing by securing the field noise data was established.

  • PDF