• Title/Summary/Keyword: 유동혼합

Search Result 1,042, Processing Time 0.026 seconds

A CFD Analysis on the Gas-Liquid Ejector (가스-액체 이젝터에 대한 CFD 해석)

  • Jeong, H.M.;Utomo, Tony;Jin, Z.H.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • 가스-액체 이젝터에 관한 수치해석은 3차원 CFD 모델로 수행하였다. 본 논문에서는 이젝터의 유동특성과 질량전달특성에 대한 작동조건과 이젝터의 기하학적 모형의 영향에 관한 연구를 수행하고자 한다. CFD 결과 실험 데이터에 의하여 검증되었으며, 유동 분석과 이젝터 성능의 예측 또한 실행되었다. 작동상태의 변화는 0.2 $\sim$ 1.2 범위에서 가스-액체 유량비를 변화시킴으로서 주어진다. 혼합관의 $L_M/D_M$이 4 $\sim$ 10의 범위에서 변화를 주었다. CFD 연구는 길이와 직경비가 5.5일 때 체적 유량전달계수는 가스 유량이 증가함에 따라 증가한다는 것을 나타낸다. 동시에 $L_M/D_M$가 4일 때 체적유량전달계수는 기체-액체 유량비가 0.6에서 최대치에 도달한다. 또한, 체적 유량전달계수는 혼합 튜브길이가 증가함에 따라 감소한다.

  • PDF

Optimization of supersonic ejector (2차 노즐목을 갖는 초음속 이젝터의 최적화)

  • Park, Hyung-Ju;Yoon, Shi-Kyung;Yeom, Hyo-Won;Sung, Hon-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.130-134
    • /
    • 2010
  • The effects of design parameters of supersonic ejector system under the assumption of constant pressure mixing were performed. Design parameters were mass flow rate ratio, area ratio between primary and secondary flow, and primary Mach number. 1-D theoretical performance of ejector in terms of pressure ratio and contraction ratio with and without loss mechanism such as diffuser efficiency and friction were considered.

  • PDF

The Interaction of Vortex Shedding Behavior in Hybrid Rocket Combustion (와류간섭에 의한 하이브리드로켓 연소 특성)

  • Park, Kyung-Soo;Lee, Chang-Jin;Shin, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.244-248
    • /
    • 2012
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. The interaction of vortex shedding in the pre-chamber and small-scale vortices adjacent to burning surfaces by using combustion test.

  • PDF

A Case Study on the Test Execution for DCM using Vietnam CFBC Fly Ash Solidification Material (베트남 순환유동층 발전(CFBC) 플라이애시 고화재를 사용한 심층혼합 처리공법(DCM) 시험시공 사례)

  • Kim, Keeseok;Lee, Dongwon;Lee, Jaewon;Kwon, Yongkyu;Yu, Jihyung;Hoang, Truong Xuan;Jung, Chanmuk;Min, Kyongnam
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.38-48
    • /
    • 2018
  • Deep cement mixing method (DCM) is used to improve the quality of various ground type and its technical development proceeding based on performance improvements of solidification materials and mixing techniques with ground soil. In this study, it was possible to improve silty clay ground soil had 1 to 3 MPa compressive strength using solidification material that composed mainly circulating fluidized bed combustion (CFBC) power plant fly ash and reduce standard deviation of strengths from over 1.0 MPa to 0.322 MPa using improved auger bits in field test to forming more uniform bulbs than in case of using existing auger bit.

Reactive Flow Fields Analysis of End-Bunting Combustor with Different Impinging Type Injectors (End-Burning 연소기의 충돌형 산화제 주입기 형상 변화에 따른 연소유동장 해석)

  • Min, Moon-Ki;Kim, Soo-Jong;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.51-59
    • /
    • 2007
  • The end-burning combustion field using impinging oxidizer injectors are analyzed with tangential type injectors in order to examine their mixing and combustion characteristics. The impinging type showed further improved mixing effect as well as the combustion efficiency compared to the previously studied tangential injector. A novel injector capable of delivering impinging and swirl effect is introduced in this study where it demonstrated that the grain coning effect can be avoided. It was found that the combined impinging and swirling flow would promote the radial mixing rate increasing the residence time and the turbulent intensity. However, the use of the step combustor which may augment the turbulent intensity did not show any notable difference compared to the basic combustor.

Analysis on the Charging Process of Stratified Thermal Storage - Tanks with Variable Inlet Temperature (입구온도가 변화하는 성층축열조의 충전과정 해석)

  • Yoo, Ho-Seon
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.25-37
    • /
    • 1995
  • This paper presents an approximate analytical solution to one-dimensional model of the charging process for stratified thermal storage tanks, in which variation of the inlet temperature as well as the momemtum-induced mixing is taken into accout. The mixing is incorporated into the model as a constant-depth perfectly mixed layer above the plug flow region. Based on the superposition principle, the variable inlet temperature is approximated by a number of step functions. Temperature distributions for the thermocline corresponding to three types of interfacial condition arr successfully derived in terms of well-defined functions, so that a linear combination of them constitutes the final solution. Validity and utility of this work is examined through the comparison of the approximate solution with an exact solution available for the case of linearly increasing inlet temperature. With increasing the number of steps, the present solution asymptotically approaches to the exact one. Even with a limited number of steps, the present results favorably agree with those by the exact solution for a wide range of the mixing depth. Also, it is revealed that fewer steps are needed for meaningful predictions as the mixing. depth becomes larger.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame Behavior with Dynamic Subgrid G-Equation Model (Dynamic Subgrid G-방정식을 적용한 난류 예혼합 화염의 LES 해석)

  • Park, Nam-Seob;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.57-64
    • /
    • 2005
  • Large Eddy Simulation (LES) of turbulent premixed combustion flow is performed by using the dynamic subgrid scale model based on -equation describing the flame front propagation. After introducing the LES governing equations with dynamic subgrid scale (DSGS) model newly introduced into the -equation, the turbulent premixed combustion flow over backward facing step is analyzed to validate present formulation. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Turbulent Heat Transfer with Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 혼합날개에 의한 난류열전달 해석)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.9-14
    • /
    • 2007
  • The purpose of present work is to analyze the convective heat transfer downstream of mixing vane in subchannel of nuclear reactor with three-dimensional Navier-Stokes equations. SST model is selected as a turbulence closure by comparing the performances of two different turbulent closures. Three different shapes of mixing vane are tested. And, thermal-hydraulic performances of these vanes are discussed. The results show that twist of the vane improves the heat transfer performance far downstream of the vane.

NUMERICAL STUDY ON THE MIXER TYPE OF UREA-SCR SYSTEM FOR FLOW MIXING IMPROVEMENT (Urea-SCR 시스템의 유동혼합 개선을 위한 혼합기 형상에 관한 수치적 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.;Kim, W.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.368-375
    • /
    • 2010
  • To alleviate NOx emission, a variety of approaches has been applied. In marine diesels, the application of SCR systems has been considered an effective exhaust aftertreatment method for NOx emission control. Most current SCR systems use a various catalyst for the reaction of ammonia with NOx to form nitrogen and water. In theory, it is possible to achieve 100% NOx if the NH3-to-NOx ratio is 1:1. However, the reaction has a limited non-uniformity of the exhaust gas flow and ammonia concentration distribution. Therefore it is necessary to investigate the optimum flow conditions. In order to achieve uniform flow at monolith front face, we are equipped with a various mixed device. In this paper, it is presented that the mixed devices play an important role improvement of flow patterns and particle distributions of NH3 by numerical simulation.

  • PDF

NUMERICAL STUDY ON THE MIXER TYPES OF UREA-SCR SYSTEM FOR FLOW MIXING IMPROVEMENT (Urea-SCR 시스템에서 유동혼합 개선을 위한 혼합기 형상에 관한 수치적 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2010
  • To alleviate NOx emission, a variety of approaches has been applied. In marine diesels, the application of SCR systems has been considered an effective exhaust aftertreatment method for NOx emission control. Most current SCR systems use a various catalyst for the reaction of ammonia with NOx to form nitrogen and water. In theory, it is possible to achieve 100% NOx if the $NH_3$-to-NOx ratio is 1:1. However, the reaction has a limited non-uniformity of the exhaust gas flow and ammonia concentration distribution. Therefore, it is necessary to investigate the optimum flow conditions. In order to achieve uniform flow at monolith front face, we are equipped with a various mixed devices. In this paper, it is presented that the mixed devices play an important role improvement of flow patterns and particle distributions of $NH_3$ by numerical simulation.