• Title/Summary/Keyword: 유동의 간섭

Search Result 217, Processing Time 0.02 seconds

Flow Visualization of Flow Control of the Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 난류 경계층 간섭유동 제어에서의 유동 가시화)

  • Lee,Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.32-40
    • /
    • 2003
  • An experimental research has been carried out for flow visualizations of the shock wave/turbulent boundary-layer interaction control utilizing the aeroelastic flaps, Spark shadowgraphs, kerosene-lampblack tracings for the surface streakline pattern, and interference fringe patterns over a thin oil-film applied at the downstream of the shock interactions have been obtained , Effects of variation of the shapes and thicknesses of the flaps are tested, and all the results are compared to the solid-wall reference case without flow-control mechanism , From the qualitative observation of the variation of skin friction utilizing the interference fringe patterns over the silicone oil-film, a strong spanwise variation of the skin friction with a narrow and long region of separation has been noticed near the centerline behind the shock structure, which phenomenon demonstrate a strong three-dimensionality of the shock interaction flows, Influence of the shape of the cavity under the flaps to the shock interaction is also tested, and it is observed that the shape of the cavity is not negligible.

Effects of Slot Configurations on the Passive Control of Oblique-Shock-Interaction Flows (슬롯 형상이 경사충격파 간섭유동의 피동제어에 미치는 영향에 관한 연구)

  • Jang, Seong-Ha;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.18-24
    • /
    • 2006
  • Passive control of the shock wave/turbulent boundary-layer interaction utilizing slotted plates and a porous plate over a cavity has been carried out. Effect of various slot configurations on the characteristics of the interaction has been observed. Pitot/wall surface pressure distributions and flow visualizations including Schlieren images, kerosene-lampblack tracings and interference fringe patterns over a thin oil-film have been obtained at the downstream of the shock interactions. For the streamwise-slot configuration, a local higher pitot pressure was noticed at the downstream of the interaction as compared with the case of no control, however, not much improvement in pitot pressure was observed for the spanwise-slot configuration.

전산유체역학을 이용한 고 레이놀즈수 유동에서의 탠덤 에어포일 상대 위치 인자 연구

  • Jang, Gi-Won
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.523-529
    • /
    • 2016
  • 본 연구에서는 전산유체역학을 이용하여 고 레이놀즈수에 유동에서의 탠덤 에어포일에 대한 상대 위치 인자 연구를 진행한다. 탠덤형 날개의 경우 앞뒤 날개의 유동간섭이 날개 성능에 중요한 영향을 미친다. 본 연구에서는 이를 2차원 탠덤 에어포일로 고려하여 유동간섭을 확인한다. 유동간섭에 따른 에어포일 성능을 분석함으로써 뒤 에어포일의 상대 위치를 결정할 수 있으며, 본 연구결과는 실제 탠덤 날개 형태의 항공기 설계에 유용하게 이용될 수 있을 것으로 기대된다.

  • PDF

이중 슬롯을 이용한 충격파/난류 경계층 간섭현상의 피동제어

  • 구병수;김현섭;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.36-36
    • /
    • 2000
  • 천음속 또는 초음속 유동이 유동장의 하류에서 부여되는 압력조건에 의하여 감속되는 경우나, 유동방향의 갑작스런 변화를 요구하는 물체 혹은 벽면이 존재하는 경우에 발생한 충격파는 벽면을 따라 발생하는 층류 혹은 난류 경계층과 복잡한 상호간섭 (interaction)을 일으켜 충격파에 의한 박리 발생, 충격파 하류에 새로운 충격파 발생, 충격파가 큰 진폭으로 진동하게 되는 현상 등을 발생시킨다. 이러한 간섭현상은 고속유동이 통과하는 유체요소나 유체기기의 성능을 좌우하는 매우 중요한 유동현상으로, 유체기계의 설계 시 사전에 고려되어야 할 중요한 공학적 문제이다.(중략)

  • PDF

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude (중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석)

  • Choi, Kyungjun;Lee, Seonguk;Oh, Kwangseok;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.986-993
    • /
    • 2018
  • Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.

Variation of the Characteristics of Shock-Interaction Flows for Different Slot-Directions (슬롯방향 변화에 따른 충격파 간섭유동 특성변화에 관한 연구)

  • Chang Sung-Ha;Lee Yong-Hee;Lee Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.306-309
    • /
    • 2006
  • Passive control of the shock wave/turbulent boundary-layer interaction control utilizing slotted plates over a cavity has been carried out. Effect of various slot configurations on the characteristics of the interactions are tested. Pitot/wall surface pressure distributions and flow visualizations including Schlierens and interference fringe patterns over a thin oil-film have been obtained at the downstream of the shock interactions. It was found that the interaction control by a certain slot-configuration could lead a reduction of the total pressure loss through the shock wave, however, the boundary layer thickness became thicker as compared with the case of no control.

  • PDF

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol;Lee, Yong-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.327-330
    • /
    • 2006
  • Numerical study on the passive control of the oblique shock wave/turbulent boundary-layer interaction control utilizing slotted plates over a cavity has been carried out. Numerical results have been compared with the experimental observations, such as pitot/wall surface pressures and Schlieren flow visualizations, obtained for the same boundary conditions. It was found that the present numerical results shows a good agreement with experimental data. Further, the effect of different slot configurations including various number, location and angle of slots on the characteristics of the interactions are also tested, focusing on the variation of the piot pressure and the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through cavity.

  • PDF

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.18-25
    • /
    • 2007
  • Computational study on the passive control of the oblique shock-wave/turbulent boundary-layer interaction utilizing slotted plates over a cavity has been carried out. The numerical boundary layer profile upstream of the interaction follows the compressible turbulent boundary-layer theory reasonably well, and the other results also show good agreements with the experimental observations, such as the wall surface pressures and Schlieren flow visualizations. Further, the effects of various slot configuration including number, location and angle of the slots on the characteristics of the interactions, such as the variation of the total pressures, the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through the slots, are also tested and compared.

Control of Plume Interference Effects on a Missile Body Using a Porous Extension (다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2003
  • The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.