• Title/Summary/Keyword: 유동손실

Search Result 574, Processing Time 0.027 seconds

Numerical Study on Steady and Unsteady Flow Characteristics of Nozzle-Rotor Flow in a Partial Admission Supersonic Axial Turbine with Sweep Angle (스윕 각이 적용된 부분 흡입형 초음속 축류 터빈의 정상, 비정상 공력 특성에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.173-179
    • /
    • 2012
  • Steady and unsteady three-dimensional RANS simulations have been performed on partial admission supersonic axial turbine having backward/forward sweep angles(${\pm}15^{\circ}$) and the results are compared with each other. The objective of this paper is to study the effect of unsteadiness on turbine flow characteristics and performances. The all results indicated that the losses of unsteady simulations were greater than those of steady cases. It was also shown that BSW model give the effect on the reducing of mass flow rates of tip leakage. In unsteady simulation, the increase of t-to-s efficiency at Rotor Out plane was observed more clearly.

  • PDF

Numerical Study of Turbulent Flow and Combustion in a Micro Combustor with a Baffle Plate (배플이 부착된 마이크로 연소기의 난류유동 및 연소에 대한 수치해석 연구)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • Turbulent flow and combustion characteristics in a micro can combustor with a baffle plate are investigated by a Reynolds Stress Model. In order to examine the geometric effects on the turbulent combusting flow, several baffle configurations are selected. The interrelation between the flow structure and the thermal field are investigated by examing the variation of recirculation region, flame length and heat loss. For the flow mixing, the decreasing air hole is more efficient than the decrease of the fuel hole. As the fuel or air hole diameter decreases, combustion efficiency is enhanced and flame length is decreased. Additionally, as the diameter of air hole decreases, the heat loss and combustion temperature are increased, while they are reduced with decreasing the diameter of fuel hole.

Study on Flow Deflection of Duct and Raw Coal Separation Screen (덕트 및 원탄 선별망 유동 편향에 관한 연구)

  • Semyeong Lim;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.28-33
    • /
    • 2023
  • In this study, computational fluid dynamics was used to analyze the flow bias generated as air supplied by a fan passes through ducts, piping, and a coal separation screen. The flow bias of the air flow is mostly caused by the spatial characteristics of the fan volute and duct, and the internal baffle and the coal separation screen at the outlet cause strong pressure losses that dampen the flow bias. ANSYS CFX was used for computational fluid dynamics, and since the baffle and the coal separation screen are shaped like perforated plates with many small holes uniformly distributed, actual modeling for analysis was not possible. Therefore, the Porous Loss Model was applied. The evaluation of the flow bias was analyzed based on the velocity distribution of the Porous Loss Model at the outlet surface of the coal separation screen obtained from the computational fluid dynamics results.

Pressure Distribution over Tube Surfaces of Tube Bundle Subjected to Two-Phase Cross-Flow (이상 유동에 놓인 관군의 표면에 작용하는 압력 분포)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • Two-phase vapor-liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators, and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two-phase flow, it is essential to obtain detailed information about the characteristics of a two-phase flow. The characteristics of a two-phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid-dynamic force acting on the cylinder owing to the pressure distribution. A two-phase flow was pre-mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two-phase cross-flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two-phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two-phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two-phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results.

Investigation of Pressure Loss in Bent Duct (Bent Duct 내부 유동의 손실 측정)

  • Roh, U-Jin;Im, Ju-Hyun;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.295-298
    • /
    • 2009
  • Bent ducts add loss and decrease efficiency. Many researchers have been conducted the performances of bent ducts, but their shapes of inlet and outlet are same. However, in this investigation, the focus is on a bent duct which is annular at the inlet and circular at the outlet. The bent duct of these complex shapes has not been investigated, but has been used in many fields. The performance of such bent duct is investigated under inlet speed 54 m/s and Re = 238,000. Wall static pressure tappings are located surface of the bent duct to measure the static pressure and a probe is traversed at the inlet and outlet of the bent duct to measure the total pressure. As a result, it presents static pressure distribution on the bent duct surface, streamwise velocity profile at inlet and outlet of the bent duct and total pressure loss profile at outlet. In this investigation, the total pressure loss coefficient is 0.243.

  • PDF

관-통형 열교환기의 압력 손실 모형 개발

  • Shim, Yun-Seop;Wi, Myeong-Hwan;Kim, Yeon-Sik;Lee, Jun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.135-140
    • /
    • 1996
  • 액체금속로 계통의 중간열교환기 (IHX) 설계 및 해석을 위한 방법론을 개발하기 위한 일차적인 작업으로 일반적인 관-통형 열교환기의 통측 압력 손실에 대한 연구를 수행하여 통측의 유동 특성을 조사하고 이러한 특성을 바탕으로 압력 손실 분석모형 전산 코트 ASTEEPL 을 개발하여 측정자료와 비교한 결과 그 분석결과가 잘 일치하였으며 개발된 분석 모형을 이용하여 관-통형 열교환기 설계 인자와 압력 손실 및 교환기내의 유량간의 관계를 분석 하였다.

  • PDF

Evaluation and analysis of the acoustic performance of ducted silencers based on ISO 7235 (공조용 소음기의 성능시험 평가 및 분석 (ISO 7235))

  • Kim, Doo-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.191-196
    • /
    • 2000
  • 본 논문에서는 공조용 소음기에 대한 삽입손실 및 압력손실과 같은 음향성능 평가를 위해 필요한 제반 사항을 ISO 7235에 근거하여 소개하였다. 이를 위해 시험설비의 종류 및 구비조건, 측정방법, 측정시 유의사항 등을 기술하였고, 이로서 공조용 소음기의 보다 정확한 음향성능평가가 이루어지도록 검토 하였다.

  • PDF

Efficiency Analysis of Thermal Transpiration According to Back Pressure under Vacuum Condition (진공환경에서 열적발산원리의 배압에 따른 효율분석)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.76-79
    • /
    • 2007
  • From the previous researches about flow characteristic of micro-nozzle, we found that viscosity and back pressure induced heavy losses in micro nozzle. To overcome thess losses, we began to study new conceptual micro propulsion system that is thermal transpiration based micro propulsion system. It has no moving parts and can pump the gaseous propellant by temperature gradient only (cold to hot). Most of previous research on thermal transpiration is in its early stage and mainly studied for application to small vacuum facility or gas chromatography in ambient condition using nanoporous material like aerogel. In this study, we focus on basic research of propulsion system based on thermal transpiration using polyimide material in vacuum conditions.

  • PDF

An experimental study on the secondary flow and losses in turbine cascades (익렬 통로 내의 2차유동 및 손실에 관한 실험 연구)

  • Jeong, Yang-Beom;Sin, Yeong-Ho;Kim, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

Effect of Magnetic Force on the Compressive and Dynamic Properties of Magnetorheological Elastomers (자기력이 자기유동 탄성체의 압축 및 동적 특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lee, Jong-Hang
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The compressive and dynamic properties of magnetorheological elastomers were investigated as functions of magnetizable particle volume fraction, alignment of the embedded particle and magnetic force. The specimens consisted of pure and filled silicons with randomly dispersed, longitudinal and transverse aligned magnetizable particle chains. To align the embedded particles in the elastomer, the cross-linking of the elastomer composites took place in a magnetic field. The compression and dynamic tests in the absence and the presence of different magnetic forces were carried out. The modulus and loss factor of the elastomer composites increase with increasing volume fraction at the same magnetic force. The case of longitudinal alignment shows a high modulus and loss factor when compared to the case of transverse alignment or random dispersion.