• Title/Summary/Keyword: 유동불안정성

Search Result 155, Processing Time 0.02 seconds

Hydrodynamic Mass and Damping of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브집합체의 추가질량과 감쇠)

  • 김범식;손갑헌;김병구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1128-1146
    • /
    • 1989
  • 본 논문에서는 2상 횡유동의 진동 메카니즘을 규명하기 위한 실험계획의 일환으로 실시된 실험으로 부터 튜브집합체의 추가질량(hydrodynamic mass)과 감쇠 (damping)에 대해 고찰하였다. 실험은 튜브배열과 피치 대 직경비(pitch-over-di- ameter:.rho./d)가 상이한 튜브집합체에 대해 2상 유체를 모의한 공기-물(air-water) 혼합물에서 수행하였다. 액체상태로부터 99%의 보이드율까지 변화된 2상 유체의 유량은 튜브가 유체탄성 불안정성 (fluidelastic instability)에 도달할 때까지 점진적으로 증가하였다.

Flow Symmetry Breaking Effect According to Instability in Annular Combustor Part.I : Characteristics of Nozzle Arrangement (환형연소기에서 불안정성에 따른 유동적인 대칭성파괴 효과 Part I : 노즐 배치의 특성)

  • Huido Lee;Keeman Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.62-73
    • /
    • 2022
  • This research proposes a method to control combustion instability in a gas turbine combustor having an annular combustor form and compares the effect of flow symmetric braking through nozzle arrangement and the corresponding change in equivalent ratio. To this end, the symmetry breaking effect was confirmed through mode analysis of FFT, Time signal, and phase trajectory. In addition, the unstable area and the stable area were identified through mode analysis, and this was shown on the contour map. The present research shows that instability occurs when the equivalent ratio and the arrangement of the nozzles are symmetry or when the nozzles are continuously arranged, but if the arrangement and equivalent ratio are not symmetry, the combustion instability decreases dramatically even if the difference in the equivalent ratio is small.

Design of Stable Evaporative Micro-channel Systems Using Expanding Area (확장 면적을 이용한 안정된 증발 마이크로채널 시스템의 설계)

  • Lee, Hee-Joon;Yao, Shi-Chune
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.831-838
    • /
    • 2011
  • A growing bubble can be squeezed for water, and it will then encounter flow instability, which reverses toward upstream in straight micro-channels. To reduce the flow instability, a micro-channel that expands at the downstream end has been found to be effective. In the expanding area, a growing bubble will tend to move downstream because the net surface tension force of a vapor-liquid interface is inversely proportional to the local radius of curvature. We propose a static flow instability model and validate it experimentally. Moreover, we apply the local-instability parameter concept to the real design of a stable evaporative micro-channel with an expanding area. Based on the localinstability model, we establish a static design for stable expanding evaporative micro-channels.

CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - PRIMARY INSTABILITY AND FLOW CHARACTERISTICS - (원형 실린더가 주기적으로 배열된 채널 유동 - 주 불안정성 및 유동특성 -)

  • Yoon, D.H.;Yang, K.S.;Kang, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.352-357
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcaiton) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

  • PDF

PRIMARY INSTABILITY OF THE CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - EFFECTS OF THE DISTANCE BETWEEN THE CYLINDER AND THE CHANNEL WALL - (원형 실린더가 주기적으로 배열된 채널 유동의 주 유동 불안정성 - 실린더와 채널 벽 간격의 영향 -)

  • Yoon, D.H.;Yang, K.S.;Kang, C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.54-59
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcation) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

Thermal Instability and Heat Transfer Correlations of Laminar Flow over Isothermal Horizontal Flat Plate (등온 수평 평판 위를 지나는 층류유동 의 열적 불안전성 및 열전달 상관관계)

  • 박병완;유정열;최창균;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.613-620
    • /
    • 1985
  • An analysis on the thermal instability of horizontal Blasius flow in the form of longitudinal vortices has been carried out by introducing the 3-dimensional spatial dependence of the disturbance quantities. The stability problem has been simplified significantly by considering the limiting case of infinite Prandtl number and by skilfully replacing the boundary conditions at infinity with the interface conditions at the edge of the thermal boundary layer (or by simply confining the thermal disturbances in the thermal boundary layer). The advantage of this approach is that the critical values marking the onset of thermal instability can be readily obtained as solutions of the eigenvalues problems formulated by a 6*6(or a 5*5) determinant. Present analysis provides reasonable explanations on the existing experimental and theoretical data. Especially, the heat transfer correlation based on the present analysis agrees well with the existing experimental data.

Hadamard Instability of the Doi-Edwards Model in Simple Shear Flow (단순전단유동에서 Doi-Edwards 모델의 불안정성)

  • 권영돈
    • The Korean Journal of Rheology
    • /
    • v.10 no.3
    • /
    • pp.160-164
    • /
    • 1998
  • 본 연구에서 Doi-Edwards 점탄성 조성방정식의 Hadamard 안정성 분석을 행하였 다. Hadamard 안정성은 방정식의 탄성 성질과 연관되는 특성으로 파장이 짧고 진동수가 큰 파동에 의한 외란 하에서 식의 안정성을 의미한다. 먼저 안정성을 위한 일반 3차원 조건을 수립하고 단순한 1차원과 2차원 외란하에서 필요조건을 구하였다. Doi-Edwards 이론을 따 르는 물질의 단순전단유동을 고려함에 의하여 순간 전단변형률이 1.8786을 넘어설 때 파장 이 짧고 진동수가 큰 외란에 의하여 불안정성이 나타남이 증명되었다. 이 안정성의 임계치 는 실제 고분자공정 뿐 아니라 실험실에서도 쉽게 도달할수 있는 값으로 이와 같은 불안정 유동은 mi-crophase separation과 같은 물리적 현상과는 관련이 있다는 증거가 없으므로 조 성방정식 자체가 지니는 수학적 모순점에 기인한 것이라 할수 있다.

  • PDF

Transient Flow Instability inside a Gas Turbine Shaft (가스 터빈 축 내부의 비정상 유동의 불안정성)

  • Hur, Nahm-Keon;Won, Chan-Shik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.103-107
    • /
    • 1999
  • Transient flow inside a hollow shaft of a Gas Turbine engine during sudden engine stop may result in non uniform heat transfer coefficients in the shaft due to flow instability similar to steady Taylor vortex, which may decrease the lifetime of the shaft. In the present study, transient Taylor vortex phenomena inside a suddenly stopped hollow shaft are studied analytically. Flow visualization is also performed to study the shape and onset time of Taylor Vortices for various initial rotational speed.

  • PDF