• 제목/요약/키워드: 유동분사기

Search Result 178, Processing Time 0.021 seconds

Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor (3 kW급 매체순환식 가스연소기의 고체순환특성)

  • Ryu, Ho-Jung;Park, Jaehyeon;Kim, Hong-Ki;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1057-1062
    • /
    • 2008
  • To overcome disadvantages of conventional two interconnected fluidized beds system, a novel two-interconnected fluidized bed process has been adopted to 3kW chemical-looping combustor. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables such as gas velocity through the solid injection nozzle, fluidizing velocity, solid height, geometry of solid intake hole, bed temperature on solid circulation rate have been investigated in a 3kW chemical-looping combustor. The solid circulation rate increased as the solid height and the opening area of solid intake holes increased. The effect of the fluidizing velocity and the bed temperature were negligible. Moreover, long-term operation of continuous solid circulation up to 50 hours has been performed to check feasibility of stable operation. The pressure drop profiles in the bubbling beds and the downcomers were maintained steadily and solid circulation was smooth and stable.

KSR-III 매니폴드의 추진제 분사균일성 해석

  • Cho, Won-Kook
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A numerical analysis on the uniformity of propellant injection velocity of KSR-III has been carried out to give design improvements. Injector holes were approximated as porous media with the same pressure drop . The injection velocity is higher at the opposite side of the inlet for both LOX and fuel due to the static pressure rise in the stagnation region. Flow passages at the vertical circular plate in the LOX dome increase the uniformity of LOX injection. Little change was observed in the injection uniformity and pressure drop for the slanted LOX passage. Also provided were the O/ F ratio distributions from the oxidizer/ fuel injection velocity analysis.

  • PDF

A Study on the Performance Improvement in a V8 Type Turbocharged Intercooler D.I. Diesel Engine (V8형 터보차져 인터쿨러 직접분사식 디젤기관의 성능개설에 관한 연구)

  • 석동현;윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.118-127
    • /
    • 2004
  • The purpose of this study is experimentally to analyze that intake port swirl, injection system and turbocharger have an effect on the engine performance and the emission characteristics in a V8 type turbocharged intercooler D.I. diesel engine of the displacement 16.7ι, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbo-charged intercoler in order to increase boost efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5, re-entrant 8.5$^{\circ}$ combustion bowl, nozzle hole diameter ${\Phi}$0.33*3+${\Phi}$0.35*2, nozzle protrusion 3.18mm, injection timing BTDC 12$^{\circ}$CA and turbo charger (compressor 0.6A/R+46Trim, turbine 1.0A/R+57Trim) is the best in the full range of operating in the engine performance and the exhaust characteristics of NO$\_$x/ concentration. Therefore their factors are appropriated as intake system, injection and turbocharger system.

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

A Study on Flow Characteristics of Branch Type Sparger in Drain Tank for Depressurization (감압용 배수탱크내의 분기형 증기분사기의 유동특성에 관한 연구)

  • 김광추;박만흥;박경석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.356-367
    • /
    • 2001
  • A numerical analysis on branch type sparger in drain tank for depressurization is performed to investigate the flow characteristics due to the change of design factor. As the result of this study, sparger\\`s flow resistance coefficient(K) is 3.53 at the present design condition when engineering margin for surface roughness is considered as 20%, and flow ratio into branch pipe ($Q_s/Q_i$) is 0.41. The correlation for calculating flow resistance coefficients as design factor is presented. Flow resistance coefficient is increased as section area ratio of branch pipe for main pipe and outlet nozzle diameter of main pipe decreasing, but the effects of branch angle and inlet flow rate of main pipe are small. As the change rate of ($Q_s/Q_i$)becomes larger, the change rate of flow resistance coefficient increases. The rate of pressure loss has the largest change as section area ratio changing. The condition of maximum flow resistance in sparger is when the outlet nozzle diameter ratio of main pipe ($D_e/D_i$) is 0.167, the section area ratio ($A_s/A_i$) is 0.1 and the branch angle ($\alpha$) is 55^{\circ}$.

  • PDF

Shock-Wave Effects on the Mixing and the Stabilization of Supersonic H$_2$-Air Flames for SCRamjet Applications (스크램제트 모델 연소기 내에서 초음속 수소-공기화염의 혼합과 연소안정성에 대찬 충격파의 영향)

  • 허환일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.15-15
    • /
    • 1998
  • 마하 수 6 이상인 극초음속 비행에는 스크램제트(SCRamjet : Supersonic Combustion Ramjet) 엔진이 가장 적합한 엔진으로 알려져 있고 현재 미국을 중심으로 이 엔진의 개발에 많은 노력을 기울이고 있다. 스크램제트 엔진의 성공적인 개발을 위해서는 초음속 공기 내에서 연료의 분사를 통한 가장 효율적인 연소를 유도할 수 있어야 한다. 초음속 상태의 공기와 연료의 혼합을 증대시키고 연소안정성을 향상시키는 방법으로 연소기 내에 인위적으로 경사충격파를 발생시키는 방안이 Marble 등에 의해 최초로 도입되었다. 본 연구에서는 스크램제트엔진 내의 연소기를 모델링하여 마하수 2.5의 초음속공기 유동 중앙에 수소 제트를 분사하여 초음속 수소-공기 화염을 만들고 연소기의 측면에 동일한 모양과 크기의 쐐기를 각각 부착시켜 평면 경사충격파를 발생시켰다 본 실험은 충격파가 초음속 화염에 미치는 영향을 연구한 최초의 실험연구이다.

  • PDF

Flow Analysis of the Oxidizer Manifold for a Liquid Rocket Combustor using OpenFOAM (OpenFOAM을 이용한 액체 로켓 연소기의 산화제 매니폴드 내 유동 해석)

  • Joh, Mi-Ok;Han, Sang-Hoon;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.781-788
    • /
    • 2012
  • Flow in the oxidizer manifold of a liquid rocket combustor has been analysed using an open source CFD toolbox, OpenFOAM. The applicability of OpenFOAM to the problems with complex geometries involving porous media zones for simulating the pressure drop induced by the injectors has been evaluated by performing turbulent, incompressible steady-state flow analysis. The usefulness and applicable area of the OpenFOAM as a design evaluation and analysis tool will be confirmed and enlarged by further evaluation with various computational cases representing major physical phenomena in rocket combustion devices.

The Study on the Fuel Vapor Distribution of Homogeneous Charge in a DISI Engine with a 6-Hole Fuel Injector (6공 연료분사기를 장착한 DISI 엔진 내 균질급기의 연료증기 분포 특성)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • The spatial fuel vapor distribution of the homogeneous charge by a 6-hole injector was examined in a optically accessed single cylinder direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF (Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played a little more effective role in the spatial fuel vapor distribution than the swirl flow during the compression stroke at 10 mm and 2 mm planes under cylinder head gasket and the increased fuel injection pressure activated spatial distributions of the fuel vapor. In additions, richer mixtures were concentrated around the cylinder wall by the increase of the coolant temperature.

Spray Characteristics of Two-Phase Flow Jets into a Subsonic Crossflow (아음속 횡단류로 분사되는 이상유동 제트의 분무특성)

  • Lee, Keunseok;Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • An experimental study on the spray characteristics of aerated-liquid jets discharged from effervescent injectors to a subsonic crossflow was conducted to investigate effects of a gas to liquid mass ratio (GLR) and a ratio of the orifice length to the diameter (L/d). The present effervescent injectors consist of a plain orifice injector and an aerator. To analyze breakup length and spray trajectory, instantaneous spray images were taken by a high speed camera. As the GLR increased, the spray penetration became higher under the same liquid mass flow rate and the breakup length became shorter due to the bubble expansion or the annular liquid film breakup. To predict the spray trajectory of two-phase flow jets into the crossflow, the homogeneous and the separated flow models were compared.

Combustion Characteristics Study using Hyper-mixer in Low-enthalpy Supersonic Flow (하이퍼 혼합기를 사용한 저엔탈피 초음속 유동장 내연소 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.75-80
    • /
    • 2013
  • In this study, a forced ignition method with a plasma jet torch is studied in Mach 2 laboratory scaled wind-tunnel. The hyper-mixer is used as a mixer. For two normal injection cases, the one is collided against a wedge plate of the hyper-mixer and the other is directly injected into the cold main flow. For the first case, the hyper-mixer disperses the injected fuel, leading to the mixing enhancement. Furthermore, the fuel-air mixture is provided into the plasma hot gas, which enhances the combustion performance. However, the direct injection into the main flow method spends amount of fuel without ignition in the cold supersonic flow. In the end, for the forced combustion, it is important to supply the fuel-air mixture into the heat source.