• Title/Summary/Keyword: 유동균일도

Search Result 469, Processing Time 0.02 seconds

The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition (고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향)

  • Bae, Jinwoo;Seo, Juhyeong;Lee, Jae Seong;Kim, Ho Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.

Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(I) - the Case of Constant Heat Input - (열싸이폰을 이용한 잠열축열시스템의 성능실험(I) - 열주입량이 일정한 경우 -)

  • Kim, Tae-Il;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.28-36
    • /
    • 1992
  • The performance of a latent heat storage system using a thermosyphon as the heat transfer device between the heat source and the phase change material was investigated experimentally. In order to increase the effective conductivity of the phase change material, layers of copper wire mesh were immersed in the paraffin wax(Sunoco P-116) in such a way that they also may be considered as fins of the thermosyphon. The important results are as follows : (1) The void space of the wire mesh allowed the convection to occur, thus enhanced the performance of the system : (2) The increase of the number of layer of wire mesh increased the conduction heat transfer. However, it also had adverse effect of subduing convective motion of liquid wax : and (3) Overall heat transfer coefficient and thermosyphon conductance increased with the increase of the number of layer of wire mesh, whereas the heat transfer coefficient between the thermosyphon and the wax decreased.

  • PDF

Mechanical Properties and Castabilities of Al-12Mg-5.5Zn-xSi Alloys

  • Kim, Jeong-Min;Sung, Ki-Dug;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.340-346
    • /
    • 2004
  • The plan for obtaining a good combination of strength and castability appeared feasible and the following observations were made. 1. In Al-12Mg-6.6Zn-xSi alloys, more primary $Mg_2Si$ phase formed with reduced $Al_3Mg_2$ phase, as Si content is necessary for an effective solution heat treatment because the solidus temperature is very low silicon contents. 2. A high tensile strength could be obtained in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributed in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributes to fine $MgZn_2$ particles that precipitated uniformly in the matrix. 3. Al-12Mg-5.5Zn-Si alloys showed excellent casting capabilities such as hot cracking resistance and fluidity compared to the reference commercial alloys. 4. The wear resistance of Al-12Mg-5.5Zn-5Si alloy was superior to that of A7075 alloy, and even higher resistance is expected if the morphology and size of primary $Mg_2Si$ phase is carefully controlled.

Wind-Tunnel Experiment for the Steady and Unsteady Torques of a Control Panel (제어판의 정상 및 비정상 토크에 관한 풍동시험)

  • M.S. Suh;S. Kauh;S.H. Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.98-103
    • /
    • 1992
  • The dynamic and static torque characteristics of a three dimensional control panel installed behind a guide panel were investigated in a wind tunnel. The panel was tested for various wind speeds, angles of attack and positions of the panel. The effects of the rotational speed and the amplitude of the sinusoidal motion were also studied. The increasing rate of torque coefficients with the angular position of the panel is small when the panel remains in the wake region, but is linear when it reaches the external stream. In case of a sinusoidal motion of the pannel, a hysterisis appears in the dynamic torque. The hysterisis becomes strong as the wind speed and the angular speed of the panel increase. The unsteady torque is considered quasi-steady when the angular speed is less than 5.5rad/s, i.e. the reduced frequency is less than 0.035.

  • PDF

Effects of Soil Reaction (pH) of Culture Soil on the Growth of Sedum kamtschaticum in Pot Cultivation (토양반응(pH)이 분화재배 기린초의 생육에 미치는 영향)

  • Yoo, Dong-Lim;Lee, Hyean-Suk;Nam, Chun-Woo;Kim, Soo-Jeong;Suh, Jong-Taek
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.515-516
    • /
    • 2006
  • This experiment was carried out to find out proper culture soil for the flowerpot cultivation of Sedum kamtschaticum. Peatmoss was used for the culture soil. pH of the culture soils were adjusted to 4.5, 5.0, 5.5 and 6.0 using calcium hydroxide. Young plants of Sedum kamtschaticum were planted in the pots of 10cm in diameter. The experiment was conducted by the completely randomized design with 3 replications. Growth characteristics were investigated at intervals of 30 days after planting. As the pH of culture soil is lower, growth of Sedum kamtschaticum showed longer plant height and more number of leaves and branches. pH 4.5 to 5.0 appeared to be optimum range as soil reaction of Sedum kamtschaticum cultivation.

Study on Ni-Cr Electro Plating Process for Staged Combustion Cycle Engine (다단연소사이클 엔진 적용을 위한 Ni-Cr 코팅에 관한 연구)

  • Bae, Byung-Hyun;Hwang, Yang-Jin;Lee, Kyu-Hwan;Rhee, Byong-ho;Han, Yeoung-Min;Kim, Young-June;Noh, Yong-Oh;Cho, Hwang-Rae;Hyun, Seong-Yoon;Bang, Jeong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.857-863
    • /
    • 2017
  • In this paper, the process of electro Ni and electro Cr plating is studied for the purpose of thermal barrier to protect the inner wall combustion chamber. The chamber is under the environment of very high temperature and high pressure when propellants burn in there. As one of the thermal barrier coatings, Zr-based thermal spray coating has been applied to the chamber. However, peeling of coating layer can occur under such a hard condition because of the difference of thermal expansion coefficients between the ceramic and the metallic wall. We study the characteristics of Ni-Cr coating and establish its process. It is found that the thickness of over $100{\mu}m$ of Ni and Cr coating layers with the uniformity of ${\pm}10%$ can be obtained with the used of as-developed plating bath.

  • PDF

Preparation and Characterization of Dense Suspension of Aloe Gel Microcapsule (알로에 겔 마이크로캡슐의 고농도 현탁액의 제조 및 특성)

  • Go, Nam Kyung;Lee, Jin Sil;Lee, Shin Young;Hur, Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • Aloe gel microcapsule was prepared by dehydrating dispersed aloe gel droplets in the form of W/O emulsion using a vacuum evaporator. The microcapsules remained in stable suspensions after washing with mineral oil and had a homogeneous spherical structure with diameter less than 6.4 ${\mu}m$. The microcapsule suspension in mineral oil (> 41%) exhibited a step increase in viscosity and shear-thinning but not showed thixotropic behavior with a yield stress higher than 300 Pa. The dense suspension appeared to be semi-solid as the microcapsule fraction increases and to be stable after heat treatment at $105^{\circ}C$ for 15 min. In conclusion, the dense suspension composed of gel microcapsules is expected to provide a basic cosmetic formulation that can be applied to develop various types of aloe gel cosmetic products.

Comparison of Combustion Characteristics With and Without Water Tube Simulating Heat Exchanger in Two Sections Porous Media Burner (2단 다공성 매체버너에서 열교환기를 모사한 수관 유무에 따른 연소 특성 비교)

  • Lee, Hui-Do;Kim, Jae-Hyeon;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.24-34
    • /
    • 2019
  • In this study, the experimental studies were conducted to analyzing characteristics of combustion and flame stabilizing according to with and without water tube in boiler. The burner has consisted of SiC foam where has the location of submerged flame between a ceramic board acting as flash-back arrestor. Porous burner is also insulated to minimize heat loss in the radial direction. In the condition of fixed equivalence ratio, the flame mode was divided into three stability zones by the flow rate. The main factor for blow-off and flash-back depends on mixture flow rate. Consequently, the case of burner with water-tube has higher NOx emissions than without case. This result explains that the presence of water-tube makes the heat loss resistant to ambient temperature with increasing of NOx. This tendency was proved by predicting the relationship between O2 emission and NO production rate, and by analysing temperature profiles.

3-D Simulation of Air Flow in Cold Storage Room for Uniform Temperature Distribution (저온저장고 내부의 균일한 온도분포를 위한 3차원 공기유동 분석)

  • 성제중;고학균;조성인;양길모
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.279-286
    • /
    • 2000
  • Most of the domestic cold storage rooms are inefficient for agricultural products because of temperature gradients inside the storage rooms. Temperature gradients are developed mainly by improper airflow pattern inside the storage room, which is a main cause of the spoilage of the agricultural products. There proper airflow pattern is essential to minimize these temperature gradients and the spoilage. The performance and characteristics of a cold storage room were determined as a function of airflow pattern and temperature distribution in forced circulation cold storage room. A commercial CFD(computational fluid dynamics) code was used to simulate 3-D airflow in the cold storage room. Solving the flow equations for the storage room, a standard k-$\varepsilon$ turbulent model was implemented to calculate steady state turbulent velocity distribution. The CFD prediction results were compared with temperature measurements inside the cold storage room. In case of pallet storage, Temperature gradients inside pallet storage was reduced because the contact area of cold air expanded through an alley of airflow in storage. But is case of bulk storage, the last temperature of storage considerably rose more than the initial temperature of storage. The reason was that bulk storage didn't include any alley of airflow in storage.

  • PDF

Parallelization of Multi-Block Flow Solver with Multi-Block/Multi-Partitioning Method (다중블록/다중영역분할 기법을 이용한 유동해석 코드 병렬화)

  • Ju, Wan-Don;Lee, Bo-Sung;Lee, Dong-Ho;Hong, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.9-14
    • /
    • 2003
  • In this work, a multi-block/multi-partitioning method is suggested for a multi-block parallelization. It has an advantage of uniform load balance via subdividing of each block on each processor. To make a comparison of parallel efficiency according to domain decomposition method, a multi-block/single-partitioning and a multi-block/ multi-partitioning methods are applied to the flow analysis solver. The multi-block/ multi-partitioning method has more satisfactory parallel efficiency because of optimized load balancing. Finally, it has applied to the CFDS code. As a result, the computing speed with sixteen processors is over twelve times faster than that of sequential solver.