• Title/Summary/Keyword: 유동가속부식

Search Result 55, Processing Time 0.07 seconds

A Study on the Shell Wall Thinning by Flow Acceleration Corrosion and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (유동가속부식으로 인한 급수가열기 동체 감육현상 규명과 완화 방안 및 충격판 설계개선에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, In-Tae
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, four different types of impingement baffle plate-squared, curved, mitigating type and multi-hole type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type and multi-hole type baffle plate are more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Identification between Local Wall Thinning and Turbulent Velocity Components by Flow Acceleration Corrosion inside Tee of Pipe System (배관계 티에서 유동가속부식으로 인한 난류속도성분과 국부감육의 관계 규명)

  • Kim, Kyung-Hoon;Lee, Sang-Kyu;Cho, Yun-Su;Hwang, Kyung-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.483-491
    • /
    • 2011
  • When pipe components made of carbon steel in nuclear, fossil, and industry are exposed to flowing fluid, wall thinning caused by FAC(flow accelerated corrosion) can be generated and eventually ruptured at the portion of pressure boundary. A study to identify the locations generating local wall thinning and to disclose turbulence coefficient related to the local wall thinning was performed. Experiment and numerical analyses for tee of down scaled piping components were performed and the results were compared. In particular, flow visualization experiment which was used alkali metallic salt was performed to find actual location of local wall thinning inside tee components. To disclose the relationship between turbulence coefficients and local wall thinning, numerical analyses were performed for tee components. The turbulence coefficients based on the numerical analyses were compared with the local wall thinning based on the measured data. From the comparison of the results, the vertical flow velocity component(Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

Development of Lifetime Evaluation and Management Technologies for Nuclear Power Plants (원자력발전소 수명평가 및 수명관리 기술개발)

  • Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.991-1004
    • /
    • 2009
  • Operating experience of the various components in the nuclear power plants has shown that a variety of degradation mechanisms can occur during operation. Therefore, the accurate lifetime evaluation and systematic management are very important for the safe as well as the economical operation of the nuclear power plants. In this paper, the characteristics of a total of 17 degradation mechanisms were reviewed and the plausible degradation mechanisms such as stress corrosion cracking, fatigue, irradiation embrittlement, and so on, were identified. Also, the lifetime evaluation technologies which have been developed for the application to the domestic nuclear power plants are described. In addition, a total of 48 aging management programs which have been established for the safe operation of the various components are explained.

Development of Statistical Modeling Methodology for Flow Accelerated Corrosion: Effect of Flow Rate, Water Temperature, pH, and Cr Content (유동가속부식에 대한 통계적 모델링 해석방법 개발: 유속, 온도, pH 및 Cr 함량의 효과)

  • Lee, Gyeong-Geun;Lee, Eun Hee;Kim, Sung-Woo;Kim, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.40-49
    • /
    • 2016
  • Flow accelerated corrosion (FAC) of the carbon steel piping has been a significant problem in nuclear power plants. FAC occurs under certain hydrodynamic, environmental, and material conditions, and extensive research into the factors of FAC has been conducted. The basic process of FAC is now relatively well understood; however, a full mechanistic model has not yet been established. Recently, the Korea Atomic Energy Research Institute (KAERI) has built a large experiment loop system for FAC. To produce significant experimental results using this system, the factors affecting on FAC should be analyzed quantitatively, and a model needs to be developed. In this work, a statistical modeling methodology to develop an empirical model is described in detail, and a preliminary model is suggested. Firstly, FAC data were collected from the research literature in Japan and the results of domestic experiments. The flow rate, water temperature, pH at room temperature, and the Cr content are selected as major factors, and nonlinear regression is used to find the best fit of the available data. An iterative procedure between suggesting and evaluating a model is used until an optimum model is obtained. The developed model gives the FAC rate comparable to the measured FAC rate. The developed model is going to be refined using additional laboratory data in the future.

Evaluation of Liquid Droplet Impingement Erosion through Prediction Model and Experiment (예측모델 및 실험을 통한 액적충돌침식 손상 평가)

  • Yun, Hun;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1105-1110
    • /
    • 2011
  • Flow-accelerated corrosion (FAC) is a well-known phenomenon that may occur in piping and components. Most nuclear power plants have carbon-steel-pipe wall-thinning management programs in place to control FAC. However, various other erosion mechanisms may also occur in carbon-steel piping. The most common forms of erosion encountered (cavitation, flashing, Liquid Droplet Impingement Erosion (LDIE), and Solid Particle Erosion (SPE)), have caused wall thinning, leaks, and ruptures, and have resulted in unplanned shutdowns in utilities. In particular, the damage caused by LDIE is difficult to predict, and there has been no effort to protect piping from erosive damage. This paper presents an evaluation method for LDIE. It also includes the calculation results from prediction models, a review of the experimental results, and a comparison between the UT data in the damaged components and the results of the calculations and experiments.

Experimental study of internal flow field about 90degree elbow for cooling seawater pipe at the main condenser (주복수기 냉각해수배관의 직각 엘보 내부유동특성에 관한 연구)

  • Oh, Seung Jin;Cho, Dae Hwan;Bong, Tae Geun;Kim, Ok Sok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.152-153
    • /
    • 2012
  • While engine room arranging pipe which is used from the vessel, It measured the internal flow of 90 degree elbow which is used from the main condenser. Fluid flow in elbow of 90 degree is measured by PIV and Dewetron system. The Reynolds number adopts 50000 and experimental study of flow field in the elbow.

  • PDF

A Flow Analysis in the surroundings of the Impingement Baffle of the Extracting Nozzle for Shell Wall Thinning of a Feedwater Heater (추기노즐 충격판 주변의 급수가열기 동체 감육에 대한 유동해석)

  • Jung, Sun-Hee;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2977-2982
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data which effect on disclosing of the shell wall thinning of the high pressure feedwater heaters by porous plate.

  • PDF