• Title/Summary/Keyword: 유도항력

Search Result 44, Processing Time 0.023 seconds

Permeability of Viscous Flow Through Packed Bed of Bidisperse Hard Spheres (이분산 구형 입자로 구성된 충전층을 흐르는 점성 유체 흐름의 투과도)

  • Sohn, Hyunjin;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • We deal with a problem to determine experimentally as well as theoretically permeability of incompressible viscous flow through packed bed of bidisperse hard spheres in size. For the size ratios of large to small spheres ${\lambda}$=1.25 and 2, we set up bidisperse packing and measured porosity and permeability at various volumetric ratios of small to large spheres ${\gamma}$. Bidisperse packing shows lower porosity and permeability than monodisperse packing does. Variation of porosity as a function of ${\gamma}$ does not match with that of permeability. A theoretical expression for predicting permeability of a viscous flow for packed bed of bidisperse packing is derived based on calculation of drag force acting on each sphere and its predictions are compared with the experimental data and those from some relations previously suggested. It is found that our theory shows better agreement with experimental results than the previous studies and is proved to be quite simple and accurate in estimating the permeability.

The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker (파형의 왜도가 투과성 방파제 투과율에 미치는 영향)

  • Cho, Yong Jun;Kang, Yoon Koo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.369-381
    • /
    • 2017
  • It has been presumed that highly nonlinear skewed waves frequently observed in a surf zone could significantly influence the transmission behaviour via a porous wave breaker due to its larger inertia force than its nonlinear counterparts of zero skewness [Cnoidal waves]. In this study, in order to confirm this perception, a numerical simulation has been implemented for 6 waves the skewness of that range from 1.02 to 1.032. A numerical simulation are based on the Tool Box called as the ihFoam that has its roots on the OpenFoam. Skewed waves are guided by the shoal of 1:30 slope, and the flow in the porous media are analyzed by adding the additional damping term into the RANS (Reynolds Averaged Navier-Stokes equation). Numerical results show that the highly nonlinear skewed waves are of higher transmitted ratio than its counterparts due to its stronger inertia force. In this study, in order to see whether or not the damping at the porous structure has an effect on the wave celerity, we also derived the dispersive relationships of Nonlinear Shallow Water Eq. [NSW] with damping at the porous structure being accounted. The newly derived dispersive relationships shows that the phase lag between the damping friction and the free surface elevation due to waves significantly influence the wave celerity.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

A Dynamic Behavior Evaluation of the Curved Rail according to Lateral Spring Stiffness of Track System (궤도시스템의 횡탄성에 따른 곡선부 레일의 동적거동평가)

  • Kim, Bag-Jin;Choi, Jung-Youl;Chun, Dae-Sung;Eom, Mac;Kang, Yun-Suk;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.517-528
    • /
    • 2007
  • Domestic or international existing researches regarding rail damage factors are focused on laying, vehicle conditions, driving speed and driving habits and overlook characteristics of track structure (elasticity, maintenance etc). Also in ballast track, as there is no special lateral spring stiffness of track also called as ballast lateral resistance in concrete track, generally, existing study shows concrete track has 2 time shorter life cycle for rail replacement than ballast track due to abrasion. As a result of domestic concrete track design and operation performance review, concrete track elasticity is lower than track elasticity of ballast track resulting higher damage on rail and tracks. Generally, concrete track has advantage in track elasticity adjustment than ballast track and in case of Europe, in concrete track design, it is recommended to have same or higher performance range of vertical elastic stiffness of ballast track but domestically or internationally review on lateral spring stiffness of track is very minimal. Therefore, through analysis of service line track on site measurement and analysis on performance of maintenance, in this research, dynamic characteristic behaviors of commonly used ballast and concrete track are studied to infer elasticity of service line track and experimentally prove effects of track lateral spring stiffness that influence curved rail damage as well as correlation between track elasticity by track system and rail damage to propose importance of appropriate elastic stiffness level for concrete and ballast track.

  • PDF