• Title/Summary/Keyword: 유도탄

Search Result 347, Processing Time 0.022 seconds

제3세계 유도탄 개발동향-아시아 지역을 중심으로

  • Jang, Myeong-Jin
    • Defense and Technology
    • /
    • no.4 s.146
    • /
    • pp.48-55
    • /
    • 1991
  • 현재까지 제3세계 국가들은 주로 미국과 소련의 무기체계를 표본으로 삼아 자국의 전장개념에 맞는 무기체계를 개발해 왔다. 여기에는 전술용 유도탄과 전략용 유도탄이 포함되어 있으나, 앞으로 이들 국가들에서의 유도탄 개발은 상당한 제한을 받게 될 것이다. 그동안 아르헨티나, 브라질, 중국, 이집트, 인도, 이란, 이라크, 이스라엘, 리비아, 북한, 파키스탄, 사우디아라비아, 남아프리카, 시리아, 대만 및 예맨 등과 같은 나라는 자체 연구개발, 해외구매 또는 국제적 연구개발 협력체계를 통해 탄두와 전술탄도탄 체계를 확보해 왔다

  • PDF

유도탄 고체 추진기관의 세계적 연구동향

  • Kim, Jong-Uk
    • Defense and Technology
    • /
    • no.9 s.163
    • /
    • pp.32-37
    • /
    • 1992
  • 선진국의 유도탄 고체 추진기관의 연구 개발 동향 파악은 우리의 유도탄 추진기관 연구개발의 좌표확인과 나아갈 방향을 설정하는데 대단히 중요합니다. 이 글에서는 유도탄에 사용되는 고체 추진기관에 대한 세계적 연구 동향을 분석하였습니다 연구 동향은 추진시스템과 추진기관 부시스템 및 부품 2가지 부분으로 나누어 살펴보았습니다. 추진시스템은 기존의 로켓과는 다른 닥티드로켓/램젯, 펄스 모타등의 새로운 추진시스템의 연구동향을 분석하였으며, 기존 고체 로켓 모타부품의 연구개발 및 동향을 기술하였습니다

  • PDF

A Study on the Efficient Operation of Harpoon Missile Maintenance Personnel Using Simulation Model (시뮬레이션을 활용한 효율적인 하푼 유도탄 정비인력 운영 연구)

  • Choi, Youngjae;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • The maintenance of the guided missiles typically requires the efficient management of spare parts and maintenance time. This study analyzed the impact of the maintenance time on operational availability. This study classifies the maintenance team with consideration of the skill level of the Harpoon guided missile maintenance and the goal is to analyze the impact on the operational availability with the skill levels quantitatively. Based on the real maintenance data of Harpoon guided missiles, a simulation model is constructed and analyzed. The analysis of the simulation result shows the trade-off between the maintenance time and operational availability. It is expected that the simulation model can help the maintenance policies of guided missiles.

Inspection of guided missiles applied with parallel processing algorithm (병렬처리 알고리즘 적용 유도탄 점검)

  • Jung, Eui-Jae;Koh, Sang-Hoon;Lee, You-Sang;Kim, Young-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.293-298
    • /
    • 2021
  • In general, the guided weapon seeker and the guided control device process the target, search, recognition, and capture information to indicate the state of the guided missile, and play a role in controlling the operation and control of the guided weapon. The signals required for guided weapons are gaze change rate, visual signal, and end-stage fuselage orientation signal. In order to process the complex and difficult-to-process missile signals of recent missiles in real time, it is necessary to increase the data processing speed of the missiles. This study showed the processing speed after applying the stop and go and inverse enumeration algorithm among the parallel algorithm methods of PINQ and comparing the processing speed of the signal data required for the guided missile in real time using the guided missile inspection program. Based on the derived data processing results, we propose an effective method for processing missile data when applying a parallel processing algorithm by comparing the processing speed of the multi-core processing method and the single-core processing method, and the CPU core utilization rate.

A study on the datalink Interface between fighter jet RADAR and BVR AA guided missile (전투기 레이다의 시계 외 중거리 공대공 유도탄 데이터링크 연동방안 연구)

  • Yong-min Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.453-456
    • /
    • 2023
  • Fighter jets employ guided missiles equipped with seekers to counter enemy air threats. Short range guided missiles(SRM) usually carry infrared(IR) seekers and are used to engage targets within visual range. On the other hand, medium range guided missiles(MRM) often utilize radio frequency(RF) seekers to engage targets beyond visual range. Medium range guided missiles do not activate their seekers until they reach the detection range of the seeker, and the aircraft's radar guides them for a certain distance. This guidance method is called Missile Data Link(MDL), and it can be implemented in either one-way or two-way communication modes, depending on the missile's communication system. In this paper, we discuss MDL based on these two communication modes, along with the integration of RADAR, mission computers, and guided missiles.

탐색기 기술 현황

  • Lee, Won-Sang
    • Defense and Technology
    • /
    • no.10 s.152
    • /
    • pp.76-79
    • /
    • 1991
  • 탐색기는 호밍유도탄에 사용되는 핵심 유도장치로서 저가의 전술유도탄에서부터 고가의 전략유도탄용에 이르기까지 여러 다른 목표와 사양으로 개발되고 있으며, 유도 무기체계의 경제성, 정확도의 개선, 명중률의 향상을 위해 설계요구조건이 더욱 다양화되고 있는 추세이다. 여기에서는 탐색기의 주요 연구분야 설계의 요구조건과 절차, 핵심 소요기술을 소개하기로 한다

  • PDF

A Study on The Missile Service Life Extension Plan (유도탄 수명 연장 방안 고찰)

  • Ryoo, Baekneung;Kim, Baegyong;Yoo, Jichang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.163-167
    • /
    • 2017
  • The service life extension of the missile can reduce the replacement cost of the missile, maintain the combat power, and consist of the lifetime assessment of the shelf-life(energetic) items, the maintenance of the missile and upgrade of the related components. This technology should be developed together with the missile system and advanced sustainedly. It is a converging technology that combines various fields of expertise and long-term experiences and databases.

  • PDF

Verification of Missile Angular Velocity Calculation Using FMS (FMS를 이용한 대전차 유도탄의 각속도 계산식 검증)

  • Park, Eo-Jin;Kim, Wan-Shik;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.992-997
    • /
    • 2009
  • This paper focuses on the calculation of the missile angular velocity under the reduced sensor condition and its verification using the Flight Motion Simulator(FMS). The missile angular velocity is usually measured by the body gyroscopes, but we assume that the inertial sensors on the missile body are in the absence of pitch and yaw gyroscopes. Under this reduced sensor condition, this paper shows the missile angular velocity can be calculated by using the gimbal seeker gyroscope, the roll body gyroscope, the gimbal angle and its rate. The FMS experiment was carried out to verify the proposed algorithm.

Terminal Homing Guidance of Tactical Missiles with Strapdown Seekers Based on an Unscented Kalman Filter (스트랩다운 탐색기를 장착한 전술유도탄의 UKF 기반 종말호밍 유도)

  • Oh, Seung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.221-227
    • /
    • 2010
  • Recent development in seeker technology explores a new seeker design in which, with larger field-of-view (FOV), optical parts are strapped down to a body (hence, called as a body-fixed seeker or a strapdown seeker). This design has several advantages such as comparatively easier maintenance and calibration by removing complex mechanical moving parts, increasing reliability, and cost savings. On the other hand, the strapdown seeker involves difficulties in implementing guidance laws since it does not directly provide inertial LOS rates. Instead, information for generating guidance commands should be extracted by estimating missile/target relative motion utilizing target images on the image plane of a strapdown seeker. In this research, a new framework based on an unscented Kalman filter is developed for estimating missile/target relative motion on the simplified assumption of a point source target. Performance of a terminal guidance algorithm, in which guidance command is generated based on the estimated relative motion, is demonstrated by a missile/target engagement simulation.

Application of Artificial Neural Network to Predict Aerodynamic Coefficients of the Nose Section of the Missiles (인공신경망 기반의 유도탄 노즈 공력계수 예측 연구)

  • Lee, Jeongyong;Lee, Bok Jik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.901-907
    • /
    • 2021
  • The present study introduces an artificial neural network (ANN) that can predict the missile aerodynamic coefficients for various missile nose shapes and flow conditions such as Mach number and angle of attack. A semi-empirical missile aerodynamics code is utilized to generate a dataset comprised of the geometric description of the nose section of the missiles, flow conditions, and aerodynamic coefficients. Data normalization is performed during the data preprocessing step to improve the performance of the ANN. Dropout is used during the training phase to prevent overfitting. For the missile nose shape and flow conditions not included in the training dataset, the aerodynamic coefficients are predicted through ANN to verify the performance of the ANN. The result shows that not only the ANN predictions are very similar to the aerodynamic coefficients produced by the semi-empirical missile aerodynamics code, but also ANN can predict missile aerodynamic coefficients for the untrained nose section of the missile and flow conditions.