• Title/Summary/Keyword: 유도지진

Search Result 254, Processing Time 0.018 seconds

Establishment of Complex Disaster Scenario on the Utility Tunnel Study for Digital Twin System Application (디지털트윈 시스템 적용을 위한 공동구 복합재난 시나리오 구축)

  • Yon Ha Chung; So Dam Kim;Hyun Jeong Seo;Hojun Lee;Tae Jung Song
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.861-872
    • /
    • 2022
  • The purpose of this study was to establish a complex disaster scenario that can comprehensively consider various disaster situations that may occur in the utility tunnel. Method: In order to comprehensively consider the correlation between disasters, a composite disaster scenario was derived from a combination of damage factors, respectively. A risk assessment was performed in order to derive the priorities of the scenarios. And based on the results, the priorities of complex disaster scenarios were set. Result: Based on the disaster cases in the utility tunnel, a plan was prepared for complex disaster scenarios centered on damage. A complex disaster scenario was specified using a semi-quantitative evaluation method for single and multiple disaster factors such as fire, flooding, and earthquake. Conclusion: The composite disaster scenario derived from this study can be used for the prevention and preparation of damage when the precursor symptoms of a disaster are detected. In addition, the results of this study are expected to be used as basic data for preparing strategic plans and preparing complex disaster response technologies to induce rapid response and recovery in case of emergency disasters.

A Study on the Liquefaction Resistance of Anisotropic Sample under Real Earthquake Loading (이방 구속 조건에서 실지진 하중을 이용한 포화사질토의 액상화 저항강도 특성)

  • Lee, Chae-Jin;Kim, Soo-Il;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.5-14
    • /
    • 2010
  • In this study, cyclic triaxial tests were performed under anisotropically consolidated condition by using irregular earthquake loading to consider in-situ condition and seismic wave. Jumunjin sand with a relative density 50 percent was used in the tests. The consolidation pressure ratio (K) was changed from 0.5 to 1.0. The Ofunato and Hachinohe wave were applied as irregular earthquake loadings and liquefaction resistance strengths of each specimen were estimated from the excess pore water pressure (EPWP) ratio. As a results of the cyclic triaxial tests, EPWP ratio increased with increased K value. It shows that isotropically consolidated sand is more susceptible to liquefaction than anisotropically consolidated sand under equal confining pressure and dynamic loadings. From the test results, the relationship between K and EPWP ratio normalized by effective confining pressure and deviator stress was proposed. And a new factor which corrects the liquefaction resistance strength for the in-situ stress condition is proposed.

Interpretation of Deformation History and Paleostress Based on Fracture Analysis Exposed in a Trench (트렌치에서의 단열분석을 통해 도출한 단열발달사 및 고응력 해석: 울산 신암리의 예)

  • Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • The study area, located in Sinam-ri, Ulsan, in the southeastern part of the Korean Peninsula, is mainly composed of hornblende granite (ca. 65 Ma). Fracturing and reactivation of a fault striking ENE-WSW was strongly controlled by the intrusion of a mafic dyke (ca. 44 Ma), which behaves as a discontinuity in the mechanically homogeneous pluton, increasing the instability of the basement in this area. A geometric and kinematic study undertaken to interpret the faults and fractures was performed in a trench excavated almost perpendicular to the orientation of the dyke. The analysis of structural elements, such as dykes, veins, and faults, is used to infer the deformation history and to determine the paleostress orientations at the time of formation of the structures. The deformation history established based on this analysis is as follows: (1) NNE-SSW, E-W, ENE-WSW, and NE-SW trending fractures had already developed in the pluton before dyke intrusion; (2) felsic dykes intruded under conditions of σHmax oriented N-S and σHmin oriented E-W; (3) mafic dykes intruded under conditions of σHmax oriented E-W and σHmin oriented N-S; (4) dextral reactivation of the main fault associated with the development of hydrothermal quartz veins under conditions of σHmax oriented E-W and σHmin oriented N-S; (5) sinistral reactivation of the main fault and high-angle normal faults under conditions of σHmax oriented NE-SW and σHmin oriented NW-SE; and (6) dextral reactivation of the main fault and NE-SW low-angle reverse faults under conditions of σHmax oriented NW-SE and σHmin oriented NE-SW. These results are consistent with the tectonic history of the Pohang-Ulsan block in the southeastern part of the Korean Peninsula, and indicates the tectonic deformation of the southern area of the Ulsan fault bounded by Yangsan fault was analogous to that of the Pohang-Ulsan area from the Cenozoic. This work greatly aids the selection of sites for critical facilities to prevent potential earthquake hazards in this area.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.