• Title/Summary/Keyword: 유니버셜 조인트

Search Result 8, Processing Time 0.024 seconds

Coupled Vibration of Lateral and Torsional Vibrations in a Rotating Shaft Driven through a Universal Joint - Derivation of Equations of Motion and Stability Analysis - (유니버셜 조인트에 의해 구동되는 회전축의 횡진동과 비틀림진동의 연성진동 - 운동방정식의 유도 및 안정성해석 -)

  • 김정렬;전승환;이돈출
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.461-465
    • /
    • 1999
  • This paper presents theoretical analyses for unstable vibrations caused by the couple of bending and torsion in a rotating shaft driven through a universal joint. A driving shaft is assumed to be rigid and to rotate with a constant angular velocity. The driven shaft system consists of a flexible shaft with a circular section and a symmetrical rotor attached at a point between the shaft ends. Equations of motion derived hold with an accuracy of the second order of shaft deformations, and are analyzed by the asymptotic method. The vibrations become unstable when the driving shaft rotates with the angular velocity to be approximately equal to half of the sum of the natural frequencies for whirling and torsional vibrations.

  • PDF

Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle (특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가)

  • Bae, Myungho;Lee, Taeyoung;Cho, Yonsang
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.

Design of a Mechanical Joint for Zero Moment Crane By Kriging (크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계)

  • Kim, Jae-Wook;Jangn, In-Gwun;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.597-604
    • /
    • 2010
  • This study focuses on the design of a mechanical joint for a zero moment crane (ZMC), which is a specialized loading/unloading system used in a mobile harbor (MH). The mechanical joint is based on the concept of zero moment point (ZMP), and it plays an important role in stabilizing a ZMC. For effective stabilization, it is necessary to ensure that the mechanical joint is robust to a wide variety of loads; further, the joint must allow the structures connected to it to perform rotational motion with two degrees of freedom By adopting a traditional design process, we designed a new mechanical joint; in this design, a universal joint is coupled with a spherical joint, and then, deformable rolling elements are incorporated. The rolling elements facilitate load distribution and help in decreasing power loss during loading/unloading. Because of the complexity of the proposed system, Kriging-based approximate optimization method is used for enhancing the optimization efficiency. In order to validate the design of the proposed mechanical joint, a structural analysis is performed, and a small-scale prototype is built.

Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft (인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석)

  • Kwon, Hyuk-Hong;Moon, Kwan-Jin;Song, Seung-Eun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Durability Analysis due to the Shape Change of Universal Joint (유니버셜 조인트의 형상 변화에 따른 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.69-74
    • /
    • 2013
  • According to the axial torsion applied at power transmission and the vibration from the roughness of road surface, this paper analyzes the stresses on two kinds of universal joint model. As stress and deformation at model 2 becomes smaller than model 1 on structural analysis, model 2 is more stabilized than model 1. The natural frequencies at model 1 and 2 are 7,040 and 9,540 Hz respectively. As the natural frequency range of model 2 becomes higher than model 1, model 2 becomes safer than model 1. Critical frequencies at these models are calculated through harmonic response analyses. On critical frequencies at model 1 and 2, the stress at model 2 becomes lower than 2 times as much as model 1 and the deformation at model 2 becomes lower than 4 times as much as model 1. Model 2 on durability is thought to become better than model 1. This study result is applied with the design of safe universal joint and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration.

Finite Element Analysis on the Cold Forging Process of the Unified Universal Shaft Joint for the Automobile (자동차용 일체형 유니버셜 샤프트 조인트의 냉간단조 공정 유한요소해석)

  • Kwon, Hyuk-Hong;Song, Seung-Eun;Kim, Oh-Seung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.582-588
    • /
    • 2011
  • This study was aimed at the design of the dies for the unified shaft joint using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

A Study on The Vibrational Characteristics of Automotive Vehicle Propeller Shaft with Carbon/Epoxy Composite Material (자동차용 탄소/에폭시 복합재료 추진축의 진동특성에 관한 연구)

  • 공창덕;김기범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.31-31
    • /
    • 1997
  • 우수한 비강성과 비강도를 지닌 복합재료를 이용한 자동차용 추진축(Propeller Shaft)의 사용은 자동차의 구조정량화, 소음/진동 감소, 승차감 향상 측면에서 개선된 효과를 기대할 수 있다. 본 연구에서는 탄소섬유/에폭시 필라멘트 와인딩(Filament Winding) 공빔을 적용한 복합재료 튜브와 금속재 플랜지 그리고 유니버셜 조인트로 구성된 상용 차의 추진축 개발과정 중 축의 진동특성에 대한 적합한 형상과 물성을 찾기 위해 유한요소법을 적용한 자유진동 해석과 FFT 해석장비를 이용한 진동실험 그리고 축을 운용속도까지 회전시켜 공진(Resonance) 현상 발생 유무를 소음량의 측정으로 판단하는 시험이 수행되었다. 그 결과 요구조건에 적합한 진동특성을 나타내는 추진축의 형상을 결정할 수 있었다.

  • PDF