• Title/Summary/Keyword: 유기점토

Search Result 149, Processing Time 0.025 seconds

The Removal of Organic Dye Waste using Natural Clay Minerals (천연산 점토광물을 이용한 폐-유기 염료 제거)

  • Park, Jung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.321-327
    • /
    • 2006
  • red 1 and acid blue 92, anionic dyes, were removed from synthetic wastewater by the surfactant-modified clay minerals. Two different clays, such as Korean clay(M78) and Japanese clay(KJ) were treated with three different sulfactants, CTMA, DSDMA and TMSA. The surfactant-modified clay minerals such as M-1(CTMA), M-3(TMSA), KJ-1(CTMA) and KJ-3(TMSA), showed high removal efficiencies with dyes, while M-2(DSDMA) and KJ-2(DSDMA) could adsorb both dyes with relatively low efficiencies. Furthermore, almost 100% absorption of both dyes onto M-1(CTMA) and KJ-3(TMSA) revealed the possibility that these materials can be used for the removal of hazardous organic dyes from wastewater.

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

A Study on the Change of the Adsorption Process of VOCs in the Materials Prepared from the Intercalation Reaction (층간 삽입반응으로 얻어진 화합물을 이용한 휘발성 유기화합물의 흡착과정 변화에 대한 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.799-806
    • /
    • 2017
  • The potential use of modified clays in the adsorption of vapor phase benzene and toluene was investigated. The modified clays OC-CPC, IOC, and Al-PILC were prepared for comparative purposes and were characterized using infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was confirmed the intercalation of the aluminium pillar in IOC and Al-PILC, as well as the introduction of cetylpyridinium. The adsorption studies showed a great affinity of benzene and toluene for OC-CPC due to the hydrophobic character that resulted and also to the increase in the interlaminar distance. IOC showed a lower affinity for the benzene and toluene, followed by Al-PILC. Natual clay had no affinity for benzene and toluene due to its hydrophilic nature. Clay materials having a laminar structure can be chemically modified, changing their physiochemical characteristics, such as interlaminar distance, surface area, pore size, and chemical affinity. In this study, it was focused on obtaining modified clays to be used for the adsorption of volatile organic chemicals.

An Experimental Study on Strength Characteristics of Clay Mixed with Organic Acid Ground Improvement Material (유기산계 지반개량재를 혼합한 점토의 강도 특성에 관한 실험적 연구)

  • Im, Soyeong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, it was examined a strength characteristic of organic acid material that is eco-friendly and low energy as a soil improving material. The object of this study is to analysis of strength changes with observing the clay mixed organic acid material through the unconfined compression strength test and triaxial compression test during 28 days. As a result of the tests, the strength of clay mixed organic acid material is increased when the more ages are prolonged, the more organic acid material mixture ratio growed. Therefore, in grasping the strength improvement effects of clay by organic acid material mixing, it confirmed that organic acid material as soil improving material is effective through unconfined compression strength test and triaxial compression test. Through this test, the definite strength increase is confirmed according to the mixture of the organic acid material and the possibility of soil improvement is also confirmed based on this result. From now on, detailed examination and field test will help closely to definite strength characteristics.

Adsorption Behavior of Organic Dye on Granular Clay (입상점토광물에 대한 염료폐수의 흡착)

  • Lee, Tack-Hyuck;Youn, Guk-Jung;Kim, Seon-Tae
    • The Journal of Natural Sciences
    • /
    • v.13 no.1
    • /
    • pp.35-50
    • /
    • 2003
  • Granular clay minerals for adsorption of the organic dye prepared a Na-Bentonite and optimum condition calcined temperature $700^{\circ}C$ and polyvinyl alcohol quantity was 25%. Granular clay mineral stable range was pH3 to pH9 and specific area was $83m^2/g$. The adsorption of the organic dye on the Granular clay mineral showed result good adsorption with acid medium and then enthalpy was -3.36 ~ -0.84 kcal/mol. It was exhibit typical physical adsorption.

  • PDF

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

Real-Time XRD Analysis of Polystyrene/Clay Nanocomposites by In-Situ Polymerization (In-situ 중합법에 의한 폴리스티렌/점토 나노복합재료의 실시간 X선 분석)

  • Kim, Jang-Yup;Hwang, Seok-Ho;Hong, Yoo-Seok;Huh, Wan-Soo;Lee, Sang-Won
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.87-90
    • /
    • 2005
  • In this study, we have examined the exfoliation behavior of layered clay during in-situ polymeriztion with styrene by using real-time XRD analysis. The 4C1 beam line at the Pohang Accelerator Laboratory (PAL) was used for this study. Different exfoliation behaviors have been shown to depend on the cation exchange capacity (CEC) of clay and the chemical structure of organic modifiers. For 10A-MMT and 15A-MMT having high CEC, no peak shifts were observed on real-time XRD analysis during polymerization. However, 2$\theta$ for 25A-MMT and VDAC-MMT, each having low CEC’s as well as aromatic benzene moieties and vinyl groups, respectively, decreased as polymerization time increased.

Reinforced Polymer/Clay Nanocomposite Foams with Open Cell Prepared via High Internal Phase Emulsion Polymerization (고내상 에멀션 중합에 의해 제조된 열린 기공을 갖는 고장도 고분자/점토 나노복합 발포체)

  • Song, In-Hee;Kim, Byung-Chul;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Reinforced open cell micro structured foams were prepared by the polymerization of high internal phase emulsions incorporating inorganic thickeners. Organoclays were used as oil phase thickener, and sodium montmorillonite was used as aqueous phase thickener. Rheological properties of emulsions increased as oil phase thickener concentration and agitation speed increased, due to the reduced drop size reflecting both competition between continuous and dispersed phase viscosities and increase of shear force. Drop size variation with thickener concentration could be explained by a dimensional analysis between capillary number and viscosity ratio. Upon the foams polymerized by the emulsions, compression properties, such as crush strength and Young's modulus were measured and compared. Among the microcellular foams, the foam incorporated with an organoclay having reactive group showed outstanding properties. It is speculated that the exfoliated silicate layers inside polystyrene matrix, resulting in nanocomposite foam, are the main reason why this foam has enhanced properties.

Effects of Coupling Agents and Clay on the Physical Properties of Wood Flour/Polyethylene Composites (커플링제 및 점토가 목분/폴리에틸렌 복합체의 물성에 미치는 영향)

  • Park, Byung-Sub;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2011
  • Wood plastic composites (WPCs) are attracting a lot of interest recently. In this study, wood flour/polyethylene (PE) composites panels comprised of a coupling agent and nanoclay were prepared by melt-blending followed by compression molding. Five maleic anhydride grafted polyethylene (MAPE) coupling agents were tested, and the best choice and its optimum content were determined. The mechanical properties of the WPCs were measured by UTM, and the thermal properties were measured by TGA, DMA, DSC, and TMA. Adding just a small amount (1 phr) of organoclay made the tensile and flexural strength and the crystallinity of the WPC somewhat increase and the storage modulus and dimensional stability of the WPC largely increase. SEM images showed that the coupling agent drastically improved wood flour/PE interfacial bonding. Selecting the best coupling agent optimized content and adding a small amount of organoclay resulted in a high performance wood flour/PE composite.

토양 특성에 따른 Trichloroethylene (TCE:) 흡착능 비교

  • 정현정;이민희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.362-365
    • /
    • 2002
  • 토양의 물리/화학적 특성에 따른 토양의 유기오염물 흡착능 변화를 규명하기 위하여, 토양 내 clay 함량 및 유기물 함량변화, 수용액 내 TCE 농도변화에 따른 TCE 의 토양내 흡착량 변화를 측정하였다. 수용액의 pH와 실내온도는 일정하게 유지시켰으며 clay는 표면적이 다른 Ca-montmorillonite, Na-montmorillonite, kaolin을 이용하였고, 유기물질로는 활성탄을 사용하였다. 일정한 토양성분과 실제토양에 대해 수용액 내 TCE의 농도를 변화시켜 농도변화에 따른 흡착량 변화를 측정하였다. 실험결과 유기물과 점토함량의 증가에 따라 흡착량은 모두 증가하였으나 활성탄에 의한 TCE 흡착량이 점토에 비해 매우 높았으므로 유기물에 의한 TCE 흡착영향이 점토에 의한 흡착 영향보다 큰 것으로 나타났다. TCE 농도변화에 따른 흡착결과는 실제토양과 모사토양에서 모두 농도가 증가함에 따라 흡착 증가율이 증가하다가 감소하는 Langmuir isotherm 형태를 보여 주었다.

  • PDF