• Title/Summary/Keyword: 유공 강판

Search Result 21, Processing Time 0.023 seconds

Evaluation of Shear Capacity of Wide Beam Reinforced with Shear Plates with Openings (유공형 판으로 전단보강된 넓은 보의 전단거동 평가)

  • Ko, Myung Joon;Lee, Young Hak;Kim, Min Sook;Park, Jong Yil;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.667-674
    • /
    • 2015
  • In this paper, shear behavior of concrete wide beam reinforced with plates with openings was evaluated. For this evaluation, evelen specimens were manufactured. One specimen was non-shear reinforced, five specimens were reinforced with steel plates and the other five specimens were reinforced GFRP plates. Shear strengths measured through experiments were compared with ones calculated from the equation provided by ACI 318. Longitudinal spacing of shear reinforcement, transverse spacing of shear reinforcement and shear reinforcement material were considered as variables. Test results showed that the shear strength increased as the transverse and longitudinal spacing of shear reinforcement became narrow. Also, regardless of material type of shear reinforcement, the shear capacity was similar when the amount of shear reinforcement was the same.

Evaluation of Shear Capacity of Wide Beams Reinforced with GFRP and Steel Plates with Openings by Various Supporting Areas (지지부 조건에 따른 유공형 판으로 전단보강된 넓은 보의 전단성능 평가)

  • Kim, Heecheul;Ko, Myung Joon;Kim, Min Sook;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • In this paper, shear performance of concrete wide beams was evaluated through shear failure tests. The specimens were designed to have two continuous spans with a column at the center of the wide beam. Also the specimens were reinforced with plates with openings as shear reinforcements. For the test, total eight specimens, including five specimens were reinforced with steel plates and the other three specimens were reinforced with GFRP plates were manufactured. And the shear strengths obtained from the tests were compared with ones from the equation provided by ACI 318. Support width of wide beam, support section of wide beam and shear reinforcement material were considered as variables. The results showed that the support width was proportional to the increase of shear strength. Also, regardless of material type of shear reinforcement, the shear reinforcing effect was similar when the amount of shear reinforcement was the same.

Composite Behavior of Perfobond Rib Shear Connector for Steel-concrete Decks (강-콘크리트 합성 바닥판용 전단연결재의 합성 거동 연구)

  • Kim, Hyeong-Yeol;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.91-97
    • /
    • 2006
  • This paper presents the results of push-out test conducted for the perfobond rib shear connectors welded onto steel-concrete composite deck. Push-out test specimen consists of profiled steel sheeting, perfobond rib, reinforcement, and concrete. To provide longitudinal shear resistance between the profiled sheeting and the concrete, perfobond rib with a number of holes was used. The parameters considered in the design of perfobond rib were the spacing and location of holes, and effect of reinforcing bars placed in the holes. To validate the effectiveness of the proposed system, twelve specimens were fabricated and tested. Although the scope of test was limited in nature, the results of test have shown that the perfobond ribs can be effectively used for shear connection in the steel-concrete composite decks.

Experimental Study on the Characteristics of the Lateral Load Resistance of Perforated Steel Plates (유공강판의 횡력저항능력에 대한 실험적 연구)

  • Park, Jeong-Ah;Lee, Young-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, an experimental research was performed to find the characteristics of the lateral load resistance of perforated steel plates which could be developed to retrofit existing RC framed buildings. The Specimens are tested with variables such as aspect ratio of plate, the ratio of perforation area, and the ratio of perforated diameter to strip which is more than 0.6. The lateral load was applied with displacement control until to reach 3.5% drift ratio. Through the experimental results, it was shown that the maximum strength of all specimens were reached at around 0.5% drift ratio and maintained until 3.5% drift ratio. From results, the modified strength prediction formula was derived with the variable ratio of the perforated diameter to strip. To evaluate seismic retrofit performance of RC frames using perforated steel plate, a simple design process was presented.

Free Vibration Analysis of Perforated Steel Plates with Various Cutout Curvatures and Rotations (곡률과 회전을 고려한 유공 강판의 자유진동해석)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-70
    • /
    • 2010
  • This study presents free vibration analyses of perforates steel plates with various cutouts. Four different parameters (shape, size, curvature radius ratio, and rotation of cutouts) were considered to investigate the effects of those parameters on the free vibration characteristics, such as natural frequencies of the perforated steel plates. Three different shapes of cutouts are circle, square, and triangle, and the considered sizes are 5, 10, 15, 20, and 25 mm. For the triangular and square cutouts, the characteristic radii of the inscribed circles of those cutouts were defined. In addition, the curvature radius ratio was defined as the ratio of curvature radius of bluntness and the characteristic radius. Then, total seven different curvature radius ratios (0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) were considered. To investigate the rotation effect of the cutouts, it was considered four rotations ($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$) for the square cutouts and three rotations (0, 15, and 30) for the triangular cutouts. All the free vibration analyses were conducted using a general purpose finite element program. From the analyses we found that the most influential parameter for the free vibration response of the perforated plates is the size of cutout. The other factors such as the shape, curvature radius ratio, and rotation are minors; they mainly change the natural frequency as long as the size effect is accompanied.

In-Plane Collision Analysis of Perforated Steel Plates (면내 충돌에 의한 유공 강판의 거동 해석)

  • Kang, Dong-Baek;Lee, Ju-Won;Na, Won-Bae;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • In many cases, open-type plate breakwaters use plates with multiple holes; the holes serve as energy dissipaters and weight reducers. Because of the multi-holes configuration, stress concentration should be considered during the design process. Among several design loading conditions, the loads from a possible collision with a man-made vessel or other unexpected events many damage a multi-perforated steel plate. In that case, the structural behavior of a multi-perforated steel plate is quite significant, and is not well understood. This study presents a collision analysis for a multi-perforated steel plate. First, four different perforation topologies (three with circles and one with squares) were selected to investigate the effect of different hole shapes on the structural response. Second, the wave force at a specific site was calculated and loaded onto a steel plate as a static load. The static stresses were used for reference values. Third, two rigid body impacters (cubical & cylindrical) were applied to the steel plates to investigate the transient stress responses. In addition, two different impacting angles ($45^{\circ}\;&\;90^{\circ}$) were selected to investigate the angle effect. From the collision analysis, the significance of the transient stresses was emphasized.

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.

Shear Strength Equation of Concrete Wide Beam Shear Reinforced With Steel Plate Considering Transverse Spacing and Support Width (전단 보강 간격과 지지부 조건을 고려한 유공형 강판으로 전단 보강된 콘크리트 넓은 보의 전단 강도 산정식)

  • Kim, Min Sook;Jeong, Eun Ho;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • This paper discusses the influence of transverse reinforcement spacing and support width of concrete wide beam on shear performance. In order to evaluate the shear performance, a total of thirteen specimens were constructed and tested. The transverse reinforcement spacing, the number of legs and support width were considered as variables. From the test results, the shear strength equation of concrete wide beam is proposed for prediction of shear strength of concrete wide beam to consider the transverse reinforcement spacing and support width. It is shown that the proposed equation is able to predict shear strength reasonably well for concrete wide beam.

An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck (초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가)

  • Yoon, Ki Yong;Kim, Sang Seup;Han, Deuk Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2008
  • A simple steel-concrete composite deck is developed for preventing the lateral torsional buckling of girders that are under construction and for reducing the term of works using H-shaped rolled beams as bridge girders. A new type of shear connectors is also developed for the composite behavior between a simple steel-concrete composite deck and the rolled beams by the connecting conditions between the deck and the girders. One is a connector bolt that is lengthened and split or tightened with two nuts and the other is an I-shaped rolled beam welded on a steel plate with a number of holes punched through the web. In this study, to estimate the shear strength of those shear connectors the push-out tests are performed and the test results are compared with that of the previous studies and the codes. The result of the push-out tests of the connector bolts showed that the shear performance is similar to that of the stud connector and revealed that the equation for the shear strength in the Korean Specification of Highway Bridge overestimates the shear capacity of the connector bolt whose diameter is larger than 19mm. From the push-out tests of punched I-shaped rolled beams with varying welding amounts, with the small amount of welding, shear capacity is governed by the shear capacity of welding. On the other hand, shear capacity is governed by the size of the punched I-shaped rolled beams, regardless of the amount of welding.

A Parameter Analysis for Pull-out and Push-out Behavior of Steel Pipe Pile Cap with the Open Type Perfobond (개방형 퍼포본드로 보강된 강관말뚝머리의 인발 및 압발거동에 관한 매개변수 해석)

  • Kim, Young-Ho;Kang, Jae-Yoon;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.661-669
    • /
    • 2009
  • Various kinds of shear connectors such as headed stud, channel, perforated steel plate and others are commonly used to transfer stress and conduct composite performance in steel concrete composite structures, and many researches have been conducted to improve the characteristics of different types of shear connectors. It is focused in this study on the pull-out and pushout performance of steel pipe pile cap with the open type perfobond for the composite connection to the spread footing. A parameter analysis was conducted, using ABAQUS, a nonlinear finite element analysis program, to obtain data for determining the characteristics of the structure and to allow various parametric analyses of steel pipe cap with the open perfobond.