• Title/Summary/Keyword: 윈드시어

Search Result 7, Processing Time 0.026 seconds

A Study on the Characteristics of Low-Level Wind Shear at Jeju International Airport from Go-Around Flight Perspective (항공기 복행사례를 통한 제주국제공항 저층 윈드시어의 특징 연구)

  • Cho, Jin Ho;Baik, Ho Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Low level wind shear, which often occurs at Jeju International Airport, is a phenomenon that occurs when the topological location and topographical characteristics of Jeju Island are combined with weather characteristics. Low level wind shears, which are caused by rapid changes in wind direction and wind speed, pose a threat to aircraft safety and also cause abnormal situations, such as aircraft go-around, diversion, and cancellation. Many meteorological studies have been conducted on weather patterns, occurrence periods and frequency of low level wind shears. However, researches related to aircraft operations are limited where here we study the similarities and differences between strong southwest winds and bidirectional tailwind type low level wind shears based on aircraft go-around cases at Jeju International Airport. The results are expected to be used to enhance safety when operating to Jeju International Airport, which includes pilot training that reflects the characteristics generated by wind changes, pilot prior notification, providing pilots with latest trends, and increasing extra fuel.

Individual Pitch Control of NREL 5MW Wind Turbine in a Transition Region (NREL 5MW 풍력터빈의 천이영역에서의 개별피치제어)

  • Nam, Yoonsu;La, Yo Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.210-216
    • /
    • 2013
  • Rotor blades experience mechanical loads caused by the turbulent wind shear and an impulse-like wind due to the tower shadow effect. These mechanical loads shorten the life of wind turbine. As the size of wind turbine gets bigger, a control system design for mitigating mechanical loads becomes more important. In this paper, individual pitch control(IPC) for the mechanical loads reduction of rotor blades in a transition wind speed region is introduced, and simulation results verifying IPC performance are discussed.

Individual Pitch Control of NREL 5MW Wind Turbine Blade for Load Reduction (NREL 5MW 풍력터빈의 블레이드 하중 저감을 위한 개별피치제어)

  • La, Yo-Han;Nam, Yoon-Su;Son, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1427-1432
    • /
    • 2012
  • As the size of a wind turbine increases, the rotor diameter increases. Rotor blades experience mechanical loads caused by the wind shear and the tower shadow effect. These mechanical loads reduce the life of the wind turbine. Therefore, with increasing size of the wind turbine, wind turbine control system design for the mitigation of mechanical loads is important. In this study, Individual Pitch Control in introduced for reducing the mechanical loads of rotor blades, and a simulation for IPC performance verification is discussed.

A study on wind source interpolation based on shape of complex topography (복잡지형 형상에 따른 풍력자원 보정에 관한 연구)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Kim, Eui-Sun;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.62-68
    • /
    • 2009
  • There has been a continuous increase in the utilization and utility value of renewable energy such as wind power generation in modem society. Wind condition is the absolute variable to the energy volume in the case of a wind power generation system. For this reason, wind power generators have already been installed in areas where wind velocity is high and the possibility of danger is very low. In other words, instability is likely if the wind velocity in an area is high and where a wind power generation system can be built. On the contrary, low wind velocity is possible in an area with high stability. Therefore, the design and manufacture of a wind power generation system should be carried out in a more complicated topography in order to secure a bigger market. This study examines and suggest how topography affects wind shear by analyzing the measured data in order to predict wind power generation more reliably.

A Study on the Pressure Patterns that Causes Bidirectional Tailwind on the Runway of Jeju International Airport (제주국제공항 활주로에 양배풍을 유발하는 기압 패턴에 관한 연구)

  • Jinho Cho;Kangmin Lee;Hojong Baik;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Jeju International Airport is characterized by the occurrence of low-level windshear due to its location, surrounding terrain, and its weather characteristics. Especially the low-level windshear accompanied by tailwinds on both sides of the runway i.e., bidirectional tailwind, is a hazardous weather phenomenon with unique characteristics that are difficult to find at any other airports. This study focuses on bidirectional tailwind occurrence at Jeju International Airport in 2020-2021. As a result, characteristic pressure patterns of the types that cause bidirectional tailwind was identified as it was possible to categorize strong wind types such as 1) strong southwest wind, 2) strong east wind, and 3) strong northwest wind, which do not cause bidirectional tailwind, and wind direction variation types such as 4) bidirectional tailwind, and 5) south wind followed by southwest wind, which cause bidirectional tailwind. The results of this study are expected to contribute to improving aviation safety by enabling aviation operators to predict and take appropriate safety measures based on their understanding of the causes and characteristics of bidirectional tailwind.

Low-Level Wind Shear (LLWS) Forecasts at Jeju International Airport using the KMAPP (고해상도 KMAPP 자료를 활용한 제주국제공항에서 저층 윈드시어 예측)

  • Min, Byunghoon;Kim, Yeon-Hee;Choi, Hee-Wook;Jeong, Hyeong-Se;Kim, Kyu-Rang;Kim, Seungbum
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Low-level wind shear (LLWS) events on glide path at Jeju International Airport (CJU) are evaluated using the Aircraft Meteorological Data Relay (AMDAR) and Korea Meteorological Administration Post-Processing (KMAPP) with 100 m spatial resolution. LLWS that occurs in the complex terrains such as Mt. Halla on the Jeju Island affects directly aircraft approaching to and/or departing from the CJU. For this reason, accurate prediction of LLWS events is important in the CJU. Therefore, the use of high-resolution Numerical Weather Prediction (NWP)-based forecasts is necessary to cover and resolve these small-scale LLWS events. The LLWS forecasts based on the KMAPP along the glide paths heading to the CJU is developed and evaluated using the AMDAR observation data. The KMAPP-LLWS developed in this paper successfully detected the moderate-or-greater wind shear (strong than 5 knots per 100 feet) occurred on the glide paths at CJU. In particular, this wind shear prediction system showed better performance than conventional 1-D column-based wind shear forecast.