• Title/Summary/Keyword: 윈도우 스위칭

Search Result 12, Processing Time 0.025 seconds

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

The hysteresis characteristic of Feedback field-effect transistors with fluctuation of gate oxide and metal gate (게이트 절연막과 게이트 전극물질의 변화에 따른 피드백 전계효과 트랜지스터의 히스테리시스 특성 확인)

  • Lee, Kyungsoo;Woo, Sola;Cho, Jinsun;Kang, Hyungu;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.488-490
    • /
    • 2018
  • In this study, we propose newly designed feedback field-effect transistors that utilize the positive feedback of charge carriers in single-gated silicon channels to achieve steep switching behaviors. The band diagram, I-V characterisitcs, subthreshold swing, and on/off current ratio are analyzed using a commercial device simulator. To demonstrate the changing characteristics of hysteresis, one of the important features of the feedback field effect transistor, we simulated changing the gate insulating material and the gate metal electrode. The fluctuation in the characteristics changed the $V_{TH}$ of the hysteresis and showed a decrease in width of the hysteresis.