• 제목/요약/키워드: 위험예측

검색결과 2,194건 처리시간 0.027초

보행자 경로 예측 기법을 이용한 위험구역 진입 여부 결정과 Knowledge Distillation을 이용한 작은 모델 학습 개선 (Determining Whether to Enter a Hazardous Area Using Pedestrian Trajectory Prediction Techniques and Improving the Training of Small Models with Knowledge Distillation)

  • 최인규;이영한;송혁
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1244-1253
    • /
    • 2021
  • 본 논문에서는 보행자 경로 예측 기법을 이용하여 보행자들이 현재 시점 이후로 위험구역으로 진입하는지 사전에 예측하는 방법과 경로 예측 네트워크의 효율적인 간소화 방법을 제안한다. 그리고 임베디드 환경에서 실시간 운용을 위해 작은 네트워크에 대하여 KD(Knowledge Distillation)을 적용하는 방법을 제안한다. 예측된 미래 경로와 위험구역 간의 상관관계를 이용하여 진입 여부를 판단하였으며 작은 네트워크를 학습할 때 효율적인 KD를 적용하여 성능저하를 최소화하였다. 실험을 통하여, 제안하는 간소화 기법을 적용한 모델이 기존 모델과 비교하여 37.49%의 속도향상 대비 미미한 정확도 저하를 이끌어 내는 것을 보여 주었다. 또한, 91.43%의 정확도를 가진 작은 네트워크를 KD를 이용하여 학습한 결과 94.76%의 향상된 정확도를 보임을 확인하였다.

해상교통관제 위험도 지수 개발에 관한 기초연구

  • 박상원;박영수
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 춘계학술대회
    • /
    • pp.270-271
    • /
    • 2018
  • 본 연구는 관제사 관점의 해상교통관제 위험도 지수 개발을 하는 것을 목적으로 한다. 선행연구를 통해 위험도 지수의 요인을 살펴보고 관제 교신 청취 및 관제사 의견을 반영해 위험도 지수 요인을 도출했다. 도출한 위험도 지수 요인의 상관관계를 확인하기 위해 관제 구역 내에서 발생한 해양사고를 분석 했다. 해상교통관제 위험도 지수는 관제구역 내 위험도를 예측 하여 해양사고를 대비할 수 있을 것으로 예상된다.

  • PDF

인공신경망을 적용한 신호교차로 교통사고심각도 예측에 관한 연구 (A Study to Predict the Traffic Accident Severity Level Applying Neural Network at the Signalized Intersections)

  • 최재원;김성호;조준한;김원철
    • 대한교통학회지
    • /
    • 제22권3호
    • /
    • pp.127-135
    • /
    • 2004
  • 교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.

준지도학습 기반의 P2P 대출 부도 위험 예측에 대한 연구 (Semi-Supervised Learning to Predict Default Risk for P2P Lending)

  • 김현정
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.185-192
    • /
    • 2022
  • 본 연구는 P2P(Peer-to-Peer) 대출의 부도위험 예측을 위하여 준지도학습(SSL) 기반의 모델을 개발하고자 한다. 검증된 성능에도 불구하고 지도학습(SL) 방법은 완전 지불 또는 채무불이행과 같이 레이블이 결정된 다수의 데이터가 필요한데 충분한 수의 레이블 데이터를 수집하려면 많은 자원과 시간이 필요하다. P2P 플랫폼이 급성장하면서 대출 건수도 매해 급증하였고, 레이블이 없는 데이터도 지속적으로 증가하고 있다. 본 연구는 P2P 대출 플랫폼인 LendingClub에서 수집한 데이터를 사용하였다. P2P 대출 중 레이블이 결정된 대출에서 추출한 정보뿐만 아니라 레이블이 결정되지 않은 대출에서 추출한 정보도 사용하여 부도 위험을 예측하는 SSL 모델을 개발하여 연구를 수행한 결과, 적은 수의 레이블이 결정된 데이터를 사용함에도 불구하고 SSL 방법으로 구축된 모델이 많은 수의 레이블이 결정된 데이터를 사용하여 학습시킨 SL 방법으로 구축된 모델보다 부도 위험 예측성과가 향상되었다.

수치산림입지도를 이용한 산불발생위험지역 구분 (Classification of Forest Fire Occurrence Risk Regions Using Forest Site Digital Map)

  • 안상현;원명수;강영호;이명보
    • 한국화재소방학회논문지
    • /
    • 제19권3호
    • /
    • pp.64-69
    • /
    • 2005
  • 산불은 경제적 손실뿐만 아니라 인명을 위협할 수 있는 국가적 재해다. 이러한 산불을 미연에 방지하고 피해를 저감하기 위해서는 산불발생위험지역을 사전에 판단하여 효율적으로 관리하는 것이 필요하다. 본 연구에서는 입지환경에서 중요한 부분을 차지하는 산림토양특성 중 토양형, 지형, 토성, 경사, 배수 등과 산불발생지점을 가지고 각 지점별 산불발생위험을 예측할 수 있는 산불발생확률 모형을 개발하였다. 개발 시 조건부확률과 GIS를 이용하였다 개발된 산불발생확률 모형의 적합성 검정을 위하여 추정모형의 예측력 비율을 검토할 수 있는 예측비곡선에 적용한 결과 실효성이 있는 것으로 나타났다. 이러한 결과를 적용하여 산불관리자가 손쉽게 산불발생위험지역을 파악할 수 있도록 위험지역을 구분하였다.

마코프 체인과 객체 판독키를 적용한 범죄 예측 확률지도 생성 기법 연구 (A Study on Generation Methodology of Crime Prediction Probability Map by using the Markov Chains and Object Interpretation Keys)

  • 노찬숙;김동현
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권11호
    • /
    • pp.107-116
    • /
    • 2012
  • 본 논문에서는 과거 발생했던 범죄 빈도수가 적용된 해당 지역의 도시 공간 정보를 구성하고 있는 객체를 바탕으로 육안으로 판별이 가능한 특징들을 판독키로 정하고, 위험도를 계량화하였으며, 미래 예측 기법인 마코프 체인 방식을 적용하여 래스터 형태의 위험도 확률지도를 생성하는 기법을 제안한다. 이때 객체 판독키는 일정 크기의 셀로 나누어 셀에 해당하는 계량화된 위험지수를 적용하고, 여러 계층의 범죄 예측 확률지도를 통합하여 통합된 위험도 확률지도를 생성한다. 이는 정적인 정보가 아닌 시간에 따라 위험도 확률지도가 변화될 수 있고, 객체 판독키의 추가 적용에 따라 달라질 수 있는 위험도 확률지도를 생성하여 범죄의 예방에 적용될 수 있는 모델 구성 방법을 제시한 것으로, 순찰 경로 및 감시 장비의 최적 배치에 활용될 수 있을 것이다.

빅데이터를 활용한 드론의 이상 예측시스템 연구 (A Study on the Anomaly Prediction System of Drone Using Big Data)

  • 이양규;홍준기;홍성찬
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.27-37
    • /
    • 2020
  • 최근 국내외 빅데이터가 4차 산업혁명의 핵심기술로 급부상하고 있다. 또한, 4차 산업혁명의 발달과 더불어 드론에 대한 활용도와 수요가 계속 증가하고 있으며, 이에 관한 결과로 이제 드론은 일상생활과 다양한 산업 활동에 많이 활용되고 있다. 하지만 드론의 활용이 많아지면서 추락의 위험 또한 높아지고 있다. 드론은 비행 시 드론 내부 특성상의 간단한 구조로 인하여 작은 문제에도 쉽게 추락할 수 있는 위험요소를 항상 가지고 있다. 본 논문에서는 이러한 드론 추락 위험요소를 예측하고 추락을 방지하기 위하여 드론의 구동 모터와 일체형으로 ESC(Electronic Speed Control)를 부착하고 그 안에 가속도 센서를 장착해 진동 데이터를 실시간으로 수집 및 저장하고 그 데이터를 실시간으로 처리 및 모니터링 한다. 그리고 모니터링 상황에서 얻어진 빅데이터를 통한 데이터를 고속 푸리에 변환(Fast Fourier Transform,FFT) 알고리즘을 이용하여 수집된 빅데이터를 분석하여 드론 추락의 위험을 최소화하는 예측시스템을 제안하였다.

수도권 미계측지역에 대한 돌발홍수위험도 산정 연구 (Flash flood risk indicator for ungauged area of Seoul metropolitan region)

  • 이병주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.94-94
    • /
    • 2016
  • 돌발홍수는 수십 $km^2$ 이하의 유역에서 강우가 발생한 후 6시간 이내의 단시간에 홍수징후가 나타나는 현상으로 정의될 수 있다. 돌발홍수를 잘 예측하기 위해서는 국지적으로 발생하는 집중 호우를 잘 예측해야 하며 유역내 공간적인 수문반응해석을 통해 돌발홍수를 예측하는 기술이 요구된다. 본 연구에서는 유역내 공간적인 수문반응을 잘 모의하기 위해 TOPLATS 지표해석모형을 이용하였다. TOPLATS(TOPMODEL based Land Atmosphere Transfer Scheme) 모형은 물수지와 에너지수지를 통해 단위격자에 대한 실제증발산량, 토양수분량, 지하수면깊이, 지표유출량, 잠열, 현열, 지열, 순복사량 등을 모의하며 소유역단위로 지하수면깊이를 재분포시키는 특성을 가지고 있다. 돌발홍수 위험도를 산정하기 위해 실제 돌발홍수 피해사례를 조사하였으며 피해지역과 대응되는 격자 수문성분과의 상관성 분석을 통해 돌발홍수 위험도 모형을 산정하였다. 대상지역은 수도권 전체지역을 모의하기 위해 한강, 임진강, 안성천 유역을 대상지역으로 선정하였다. 수도권 지역은 약 11,930 km2이며 2009~2012년동안 총 38건의 돌발홍수 피해사례가 신고되었다. 기상자료는 기상청 AWS와 ASOS 시단위 강우, 기온, 상대습도, 풍속, 일조, 기압자료를 이용하였다. 돌발홍수 피해사례 38건에 대해 대응되는 모의격자의 수문성분을 분석하였으며 27(71%)에서 구조요청시점에 대해 강우량, 지표유출량, 토양수분량, 지하수면깊이가 적절하게 모의되는 것을 확인하였다. 강우조건에 따른 돌발홍수 위험도는 구조요청시점 기준 선행시간 4~6시간까지 71~87%, 구조요청시점으로 한정된 0시간에서는 42~52%로 나타났다. 이상의 결과로부터 지표해석모델을 이용한 격자 수문성분과 통계적 돌발홍수지수모형으로부터 산정된 돌발홍수 위험도는 산지 미계측지역에 대한 돌발홍수를 예측하는데 활용될 수 있을 것으로 판단된다.

  • PDF

정신건강 위험 예측 및 관리를 위한 멘탈 헬스케어 디지털 트윈 기술 연구 (Mental Healthcare Digital Twin Technology for Risk Prediction and Management)

  • 양세모;이강윤
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.29-36
    • /
    • 2022
  • 감정 노동 및 서비스업 종사자의 급격한 증가에 따른 감정노동자의 스트레스 및 우울증 유병률이 증가하고 있다. 하지만, 현재 감정노동자의 정신건강 관리는 스트레스 상황 당시의 정서반응을 고려하기 어렵고 개인의 기저 상태가 반영되지 않아 기존 정신건강 관리의 한계가 존재한다. 본 연구에서는 개인 맞춤형 스트레스 위험 관리 솔루션인 멘탈 헬스케어 디지털 트윈 솔루션 기술을 제시한다. 감정노동으로 인한 정신건강 위험 관리를 위해, 정서/신체반응 및 환경 등의 개인별 스트레스 위험요인을 다양한 모달리티로 추출하고 가상 공간에서 동적 객체의 동기화/모델링을 통하여 스트레스 위험도를 정밀 예측하는 솔루션 탐색 시뮬레이션을 수행한다. 사용자에게 맞는 인터벤션을 제공하여, 감정노동자의 환경에 맞게 모달리티와 객체의 구성이 가능하고 사용자의 피드백에 따라 개선 가능한 개인 맞춤형 정신건강 위험 예측을 위한 멘탈 헬스케어 디지털 트윈 솔루션을 제공한다.

위험확산 예측기술개발을 위한 기상관측장비 설치위치 선정 연구 (A study of Installation positioning AWS for the Development of Risk Prediction Technology)

  • 전영우;조명흠;이준우
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2016년 정기학술대회
    • /
    • pp.217-218
    • /
    • 2016
  • 본 연구에서는 화학사고와 관련하여 위험확산 예측기술개발을 위해 필요한 기상관측장비의 설치위치를 공간분석기법을 활용하여 우선순위로 설치되어야 하는 지역 20개소를 선정하였다. 울산전지역을 1km, 5km, 10km 격자망을 생성하여 기존 기상청에서 제공하고 있는 기상정보를 제외하고 울산전역의 상세한 기상관측정보 제공을 위해 필요한 관측개소 개수를 1차적으로 파악하였다. 위험확산 모니터링에 필요한 기상관측장비 설치간격을 결정하고 경제성을 고려하여 통신사 기지국 활용가능성을 검토하였다. 20개의 최종 설치위치를 결정하기 위해 울산지역에서 발생한 화학사고정보를 기반으로 밀도분석을 수행하여 위험지역을 분석하고, 유해화학물질을 취급하는 업소 정보를 수집하여 군집분포를 수행하였으며, 누출사고 발생 시 가장 중요하게 고려되어야 하는 주거지역 분포를 파악하기 위해 밀도분석을 수행하였다.

  • PDF