• 제목/요약/키워드: 위험성예측모델

검색결과 305건 처리시간 0.037초

A Study on Predicting Credit Ratings of Korean Companies using TabNet

  • Hyeokjin Choi;Gyeongho Jung;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.11-20
    • /
    • 2024
  • 최근 IT 기술의 발전과 더불어 금융 시장에서의 불확실성이 증대되는 상황에서 기업 신용등급 평가의 중요성을 인식하고, 이를 개선하기 위한 새로운 접근 방식으로 딥러닝 모델인 TabNet을 제안한다. 이에 본 연구에서는 TabNet을 활용하여 기업 신용등급을 예측하고, 이의 예측 성능을 기존 머신러닝 방법론과 상세하게 비교한다. 한국의 주요 증권시장에 상장된 기업들의 재무 데이터를 기반으로 TabNet 알고리즘을 적용하여 신용등급 예측 모델을 구축하고, 다양한 머신러닝 모델과의 성능을 비교 분석하였다. 실험 결과, TabNet 모델은 Precision 0.884, F1이 0.895로 기존의 머신러닝 모델들보다 우수한 성능을 보였으며, 고위험 기업을 저위험 기업으로 잘못 분류하는 경우가 다른 머신러닝 모델보다 적어 TabNet의 우수성을 확인하였다. 이는 TabNet이 기업 신용등급 예측에 있어 효과적인 도구로 활용될 수 있으며, 금융기관의 신용 위험 관리 및 의사 결정 과정을 지원할 수 있을 것으로 기대한다.

LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측 (Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM)

  • 최대우;이원빈;송유한;강태훈;한예지
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2020
  • 이 연구는 2018년도 정부(농림축산식품부)의 재원으로 농림식품기술기획평가원 지원을 받아 수행된 연구이다. 최근 시계열 및 텍스트 마이닝에서 활발히 사용되는 모델은 딥러닝(Deep Learning) 모델 구조를 활용한 LSTM(Long Short-Term Memory models) 모델이다. LSTM 모델은 RNN의 BPTT(Backpropagation Through Time) 과정에서 발생하는 Long-Term Dependency Problem을 해결하기 위해 등장한 모델이다. LSTM 모델은 가변적인 Sequence data를 활용하여 예측하는 문제를 굉장히 잘 해결했고, 지금도 널리 사용되고 있다. 본 논문 연구에서는 KT가 제공하는 CDR(Call Detailed Record) 데이터를 활용하여 바이러스와 밀접한 관계가 있을 것으로 예측되는 사람의 이동 경로를 파악하였다. 해당 사람의 경로를 활용하여 LSTM 모델을 학습시켜 이동 경로를 예측한 결과를 소개한다. 본 연구 결과를 활용하여 HPAI가 전파되는 경로를 예측하여 방역에 중점을 둘 경로 또는 지역을 선정해 HPAI 확산을 줄이는 데 이용될 수 있을 것이다.

머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로 (Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model)

  • 엄하늘;김재성;최상옥
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.105-129
    • /
    • 2020
  • 본 연구는 부도위험 예측을 위해 K-IFRS가 본격적으로 적용된 2012년부터 2018년까지의 기업데이터를 이용한다. 부도위험의 학습을 위해, 기존의 대부분 선행연구들이 부도발생 여부를 기준으로 사용했던 것과 다르게, 본 연구에서는 머튼 모형을 토대로 각 기업의 시가총액과 주가 변동성을 이용하여 부도위험을 산정했으며, 이를 통해 기존 방법론의 한계로 지적되어오던 부도사건 희소성에 따른 데이터 불균형 문제와 정상기업 내에서 존재하는 부도위험 차이 반영 문제를 해소할 수 있도록 하였다. 또한, 시장의 평가가 반영된 시가총액 및 주가 변동성을 기반으로 부도위험을 도출하되, 부도위험과 매칭될 입력데이터로는 비상장 기업에서 활용될 수 있는 기업 정보만을 활용하여 학습을 수행함으로써, 포스트 팬데믹 시대에서 주가 정보가 존재하지 않는 비상장 기업에게도 시장의 판단을 모사하여 부도위험을 적절하게 도출할 수 있도록 하였다. 기업의 부도위험 정보가 시장에서 매우 광범위하게 활용되고 있고, 부도위험 차이에 대한 민감도가 높다는 점에서 부도위험 산출 시 안정적이고 신뢰성 높은 평가방법론이 요구된다. 최근 머신러닝을 활용하여 기업의 부도위험을 예측하는 연구가 활발하게 이루어지고 있으나, 대부분 단일 모델을 기반으로 예측을 수행한다는 점에서 필연적인 모델 편향 문제가 존재하고, 이는 실무에서 활용하기 어려운 요인으로 작용하고 있다. 이에, 본 연구에서는 다양한 머신러닝 모델을 서브모델로 하는 스태킹 앙상블 기법을 활용하여 개별 모델이 갖는 편향을 경감시킬 수 있도록 하였다. 이를 통해 부도위험과 다양한 기업정보들 간의 복잡한 비선형적 관계들을 포착할 수 있으며, 산출에 소요되는 시간이 적다는 머신러닝 기반 부도위험 예측모델의 장점을 극대화할 수 있다. 본 연구가 기존 머신러닝 기반 모델의 한계를 극복 및 개선함으로써 실무에서의 활용도를 높일 수 있는 자료로 활용되기를 바라며, 머신러닝 기반 부도위험 예측 모형의 도입 기준 정립 및 정책적 활용에도 기여할 수 있기를 희망한다.

유연성 다중 회귀 모델을 활용한 보행자 이상 행동 예측 모델 연구 (Study on abnormal behavior prediction models using flexible multi-level regression)

  • 정유진;윤용익
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2016
  • 최근 강력 범죄 및 우발 범죄가 끊이지 않고 있으면서 사회적 불안감이 고조되고 있다. 이에 따라 방범용 카메라, CCTV (Closed Circuit Television)가 범죄 증거 확보와 치안을 위해 사용되고 있다. 그러나 CCTV는 주로 사후 처리 기능으로 사용하고 있으며 사전에 범죄를 예방하기는 힘들다. 본 연구에서는 CCTV로부터 수집된 보행자 데이터를 이용하여 객체의 행동을 분석하고 위험 행동 여부를 추정하기 위한 유연성 다중 회귀 모델을 제안한다. 유연성 다중 회귀 모델은 필터링, 상황분석, 예측 단계로 구성되어 있다. 먼저 보행자에 대한 환경과 상황에 대해 필터링한 후 상황분석에 대한 정보를 구축하고 관찰 객체에 이상 행동이 결정된다. 마지막으로 연관분석을 통해 객체의 행동이 예측되어 위협 상황을 통지한다. 이를 통해 다중 지역에서 객체의 행동을 추적하여 객체 행동의 위험여부를 알 수 있으며, 행동 예측을 통해 범죄 발생을 예측 가능하다.

레이더 강수량 및 수치예보 자료를 활용한 앙상블 강우예측정보 개선 방안 (Improvement of precipitation ensemble forecast by blending radar and numerical model based precipitation)

  • 오랑치맥 솜야;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.60-60
    • /
    • 2020
  • 기후변화 및 지구온난화로 인한 자연재해 규모가 점차 대형화, 다양화되고 있어 이로 인한 피해도 증대되고 있다. 특히, 다양한 시설과 인구밀도가 높은 도심 지역은 집중호우, 태풍, 홍수 등 자연재해에 취약하여 인적·물적 피해 위험성이 매우 높다. 방재 시설확보 및 개선을 통한 더 높은 안정성 및 기상예보를 통한 대응, 대책을 통한 피해 저감이 이루어지고 있다. 그러나 일반적으로 제공되는 단일 수치모형 기반의 결정론적 기상예측정보는 기상 상태, 선행시간, 모형 매개변수 등으로 인한 불확실성이 매우 크며 이에 대한 정보가 제공되지 않다. 이러한 문제점을 보완하기 위해 앙상블 수치모델 정보와 기상레이더 자료 기반의 단기 예측정보가 활용이 가능하다. 그러나, 앙상블 수치모델의 불확실성, 기상레이더 기반 예측정보의 짧은 예측 선행시간으로 인해 수문학적 모형에 입력자료로 활용은 어려운 실점이다. 본 연구에서는 지점 관측자료의 시간적 연속성, 기상레이더 자료의 공간적 연속성, 앙상블 예측정보의 선행시간 정보를 융합하여 기상예측정보에 대한 불확실성 개선 및 선행시간에 따른 정확도를 높일 방법을 제안하였다. 기상청에서 제공하는 앙상블 예측자료인 LENS 자료, 레이더 강수량, ASOS 관측자료 기반으로 분석이 수행되었으며 분석결과는 예측강수량을 활용하는 분야에 긍정적 영향을 미칠 것으로 기대된다.

  • PDF

스마트폰 혁신기술이 사용자 저항에 미치는 영향 (Factors Affecting the Resistance of Innovation Technology based Smartphone Environment)

  • 남수태;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.137-138
    • /
    • 2016
  • 본 연구에서는 기술수용모델과 혁신확산이론을 기반으로 스마트폰 혁신기술 저항에 관한 재사용 의도에 미치는 영향을 알아보고자 한다. 외부변수는 기술수용모델의 인지된 유용성과 인지된 사용 용이성 그리고 혁신확산이론의 적합성과 복잡성을 4개 변수를 두고자 한다. 예측변수는 혁신저항 변수를 두고 재사용의도에 미치는 영향으로 하여 개념모델을 완성하였다. 또한 혁신저항 변수가 인지된 위험 요인을 매개하여 재사용의도에 미치는 영향을 알아보고자 하였다. 연구대상은 부산 경남지역 및 전북지역에 거주하는 스마트폰 사용자를 대상으로 설문을 통해 자료를 수집하고자 한다. 인구통계학인 분석은 IBM SPSS Statistics 19로 하고 확인적 요인분석과 변수들 간의 인과관계에 대한 경로분석은 Smart PLS를 사용하여 분석하고자 한다. 분석결과를 바탕으로 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

지형 특성을 고려한 산지유역 위험도 분석 (Analysis of Mountainous Watershed Risk Considering the Topography Characteristics)

  • 오채연;전계원;전병희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.427-427
    • /
    • 2018
  • 최근 집중호우나 극한 강우사상으로 인하여 산사태나 토석류와 같은 산지재해가 빈번하게 발생하고 있으며 특히 우리나라는 지형 특성상 주거지역이 산지와 인접해 있는 경우가 많아 재해발생 시 피해를 가중시키는 원인이 되고 있다. 산지재해는 예측하기가 어렵고 산지에서 발생한 토석류가 계곡을 따라 흘러 내려와 도심지 및 산지와 인접한 도로나 주택지에 많은 피해를 발생 시키고 있다. 본 연구에서는 해마다 반복적으로 발생하고 있는 산사태나 토석류와 같은 재해의 피해저감과 원인분석을 위하여 강원도 삼척시 도계읍 일대를 대상지역으로 선정하고 산지유역의 위험성 분석을 위하여 사면안정성 예측 모델인 SINMAP 모형을 사용하여 산지재해가 발생 가능한 위험지역 및 안전한 구간을 분석하고 지형분류기법 중의 하나인 Topographic Position Index(TPI) 분석방법을 통해 대상지역의 지형위치지수를 계산하여 위험지형을 분류하였다.

  • PDF

건강행위정보기반 고혈압 위험인자 및 예측을 위한 통계분석 (Statistical Analysis for Risk Factors and Prediction of Hypertension based on Health Behavior Information)

  • 허병문;김상엽;류근호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.685-692
    • /
    • 2018
  • 본 연구는 통계분석을 이용한 중년 성인의 고혈압 예측모델 개발이 목적이다. 국민건강영양조사자료(2013년-2016년)를 사용하여 통계분석과 예측모델을 개발하였다. 이진 로지스틱 회귀분석으로 통계적 유의한 고혈압 위험인자를 제시하였으며, Wrapper 변수선택기법을 적용한 로지스틱회귀와 나이브베이즈 알고리즘을 이용하여 예측모델을 개발하였다. 통계분석에서 고혈압에 가장 높은 연관성을 갖는 인자는 남성에서 WHtR (p<0.0001, OR = 2.0242), 여성에서 AGE(p<0.0001, OR = 3.9185)로 나타났다. 예측모델의 성능평가에서, 로지스틱 회귀 모델이 남성(AUC = 0.782)과 여성(AUC = 0.858)에서 가장 좋은 예측력을 보였다. 우리의 연구 결과는 고혈압에 대한 대규모 스크리링 도구를 개발하는데 중요한 정보를 제공하며, 고혈압 연구에 대한 기반정보로 활용할 수 있다.

산사태 감지를 위한 USN 모니터링 시스템 모델 개발에 관한 연구 (A Study on Development of the Monitoring System Model Based on USN for Landslide Detection)

  • 천동진;김정섭;이승호;곽동걸;최신형;이봉섭;정도영
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2012년도 춘계학술논문집 2부
    • /
    • pp.812-816
    • /
    • 2012
  • 본 논문은 산사태 감지 및 붕괴예측을 위한 현장에 USN(Ubiquitous Sensor Network)을 적용한 실시간 모니터링 시스템 모델을 개발하였다. 이 시스템의 성능을 검증하기 위해 USN기반의 상시모니터링시스템모델을 제작하고 실험적 평가를 수행하였다. 성능평가는 지표변위 센서모듈 동작특성 실험적 평가, USN은 Data 수집 전송 효율성 실험적 평가, 개발한 상시감시모니터링 프로그램 동작성능 실험적 평가 등을 수행하였다. 성능평가 결과 지표변위 측정센서모듈은 변위각도에 일치성을 확인하고, USN은 지표변위 센서모듈로부터 측정된 Data를 상시모니터링시스템에 오류 없이 전송되는지를 확인하였으며, 개발한 상시모니터링 프로그램 동작기능은 실시간 모니터링 그래프, 임계동작 알고리즘, 위험성 통보 문자서비스(SMS)기능, 알람서비스기능, 현장 감시카메라 등 동작기능의 우수성을 실험으로 증명하였다. 따라서 본 연구에서 개발된 산사태 감지 예측을 위한 USN기반 실시간 모니터링 시스템 모델은 산사태위험성노출 지역에 원격 실시간 모니터링 시스템으로 널리 사용될 것으로 사료된다.

  • PDF

해상교통혼잡도와 IWRAP Mk2 기반의 항로 위험도 연관성 분석에 관한 연구 (Analysis of Correlation between Marine Traffic Congestion and Waterway Risk based on IWRAP Mk2)

  • 이의종;이윤석
    • 해양환경안전학회지
    • /
    • 제25권5호
    • /
    • pp.527-534
    • /
    • 2019
  • 항로에서의 위험도 평가 모델은 해상 교통량을 기초로 다양한 형태의 수학적 분석 방법 등이 응용되고 있다. 국내 해상교통안전진단에서는 항로를 통항하는 선박 규모를 표준화시킨 해상교통혼잡도 모델을 활용하고 있으며, 해상교통혼잡도가 높으면 충돌과 같은 위험상황이 발생할 개연성이 높다고 해석하고 있다. 그러나 항로의 특정 지점에서 관측된 해상 교통량의 밀도 변화가 항로의 위험도를 표현할 수 있는지 보다 면밀한 과학적 검토가 필요하다고 판단된다. 본 연구에서는 항로에서의 충돌 및 좌초 등의 위험도를 확률적 기법으로 평가하는 IWRAP Mk2(IALA 공식 추천 평가모델) 모델로 항로 위험도를 체계적으로 평가하고, 동일 해역에서 해상교통혼잡도 모델로 해상교통혼잡도를 평가하여 항로 위험도와 해상교통혼잡도의 연관성을 분석하였다. 분석 결과, $R^2$이 0.943인 선형함수가 도출되었으며, 유의수준에서도 유의성이 있는 것으로 분석되었다. 또한 Pearson 상관계수가 0.971로 높게 나타나 강한 정적 상관관계를 보였다. 이처럼 각각의 수학모델의 공통적인 입력 변수의 영향으로 항로 위험도와 해상교통혼잡도는 강한 연관성을 가지는 것으로 확인되었다. 이러한 연구 결과를 기반으로 항로 위험도를 예측할 수 있는 평가 기법이 고도화될 수 있는 모델 개발을 위한 응용 자료로 활용되기를 기대한다.