• Title/Summary/Keyword: 위험도 기반 선박설계

Search Result 46, Processing Time 0.032 seconds

Emergency response system for safe operation of ships (선박 안전운전을 위한 응급대응 시스템 설계)

  • Kim, Yong Su
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.81-87
    • /
    • 2016
  • In line with the sharp increase of container traffic from globalization, ships have become larger with an aim of improving the maritime transport capacity in addition to the growing interest in monitoring danger areas on ships considering the quantity increase of ships, along with the tightening of international standard for ship safety by IMO(international Maritime Organization). Korea established a location based ship accident forecasting and preventing system in 2012 by Korea Coast Guard, however its poor response in ship accidents has been pointed out in the wake of the recent disaster of Sewol ferry. To resolve this problem, this study attempts to design a wearable type, instant emergency response system that has DGPS to issue an alert on danger areas and automatically send ship's location and operation information in emergency situation.

A Design and Implementation of Digital Vessel Context Diagnosis System Based on Context Aware (상황 인식 기반 해양 디지털 선박 상황 진단 시스템 구현 및 설계)

  • Song, Byoung-Ho;Choi, Myeong-Soo;Kwon, Jang-Woo;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.859-866
    • /
    • 2010
  • Digital vessels can occur large a disaster at sea because vessels in fire and collision in case of certain unforeseen circumstances. In this paper, We propose digital vessel context monitoring system through risk analysis. We propose environment information analysis system using wireless sensor that have to acquire marine environment and context of marine digital vessel. For conducting simulation, we chose 300 data sets to train the neural network. As a result, we obtained about 96% accuracy for fire risk context and we obtained 88.7% accuracy for body of vessel risk context. To improve the accuracy of the system, we implement a FEC (Forward Error Correction) block. We implemented digital vessel context monitoring system that transmitted to diagnosis result in CDMA.

Ship Collision Risk Analysis of Bridge Piers (선박충돌로 인한 교각의 위험도 분석)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 2005
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions.

자율운항선박 육상원격모니터링 시스템 관한 연구

  • Ok, Gyeong-Seok;Lee, Gwang-Yeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.48-49
    • /
    • 2020
  • 자율운항선박의 운항과 관련된 각종 센서들에 대한 정확한 분류 및 평가는 항해·충돌방지 자율운항 선박 개발에 있어서 중요한 역할을 한다. 이 연구에서는 원격 모니터링 설계를 위한 모니터링 대상의 개념, 구성 및 연관 기능에 대하여 분석하고 시나리오 기반의 평가방법에 대하여 연구 하였다.

  • PDF

Design of the Model for Predicting Ship Collision Risk using Fuzzy and DEVS (퍼지와 DEVS를 이용한 선박 충돌 위험 예측 모델 설계)

  • Yi, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.127-135
    • /
    • 2016
  • Even thought modernized marine navigation devices help navigators, marine accidents has been often occurred and ship collision is one of the main types of the accidents. Various studies on the assessment method of collision risk have been reported, and studies using fuzzy theory are remarkable for the reason that reflect linguistic and ambiguous criteria for real situations. In these studies, collision risks were assessed on the assumption that the current state of navigation ship would be maintained. However, navigators ignore or turn off frequent alarms caused by the devices predicting collision risk, because they think that they can avoid the collisions in the most of situations. This paper proposes a model of predicting ship collision risk considering the general patterns of collision avoidance, and the approach is based on fuzzy inference and discrete event system specification (DEVS) formalism.

A Design and Implementation of Personal Vessel Monitoring System Based on Context Aware (상황인식 기반 개인 선박 상태감시시스템 설계 및 구현)

  • Shin, Do-Sung;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.112-118
    • /
    • 2011
  • Ship can be faced with more dangerous situations than ground vehicles due to the opened surroundings, sea. Therefore, it is very important to prevent the ship emergency by finding risk factor. In this paper, We propose context-aware monitoring system which that frequently check the condition of ship using the data that get through the installed sensor in the ship as gyro-sensor, strain-gage sensor. We analyzed sensor data through backpropagation algorithm and the Condition and Safety Information of sailing ship is transmitted to the crew's personal mobile device in the ship. Thus, moving crew can check the ship's condition in real time. As a result, we obtained about 95% accuracy for fire risk context and about 89% accuracy for body of Ship risk context in the simulated experiments.

Design of situation awareness and aids to navigation structure of VTS for maritime safety (해양안전실현을 위한 차세대 해상교통관제 시스템의 상황인지 및 항행지원 구조 설계)

  • Lee, Byung-Gil;Han, Jong-Wook;Jo, Hyun-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1073-1080
    • /
    • 2010
  • Realization of e-Navigation for maritime safety has become a hot research topic of these years. There has been lots of requirements of the convergence of VTS and new IT technology for prevent maritime accident caused huge mount of damage such as environmental damage of oil spill, human life and property. This paper aims to design of an intelligent VTS system based on context awareness and aids to navigation structure. The proposed system provides timely decision supporting mechanism using by situation awareness, reasoning, risk management technology and also provides information of aids to navigation for secure navigation.

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.