• Title/Summary/Keyword: 위치 에러 신호

Search Result 43, Processing Time 0.025 seconds

Localization Scheme with Weighted Multiple Rings in Wireless Sensor Networks (무선 센서 네트워크에서 가중 다중 링을 이용한 측위 기법)

  • Ahn, Hong-Beom;Hong, Jin-Pyo
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.409-414
    • /
    • 2010
  • The applications based on geographical location are increasing rapidly in wireless sensor networks (WSN). Recently, various localization algorithms have been proposed but the majority of algorithms rely on the specific hardware to measure the distance from the signal sources. In this paper, we propose the Weighted Multiple Rings Localization(WMRL). We assume that each deployed anchor node may periodically emit the successive beacon signals of the different power level. Then, the beacon signals form the concentric rings depending on their emitted power level, theoretically. The proposed algorithm defines the different weighting factor based on the ratio of each radius of ring. Also, If a sensor node may listen, it can find the innermost ring of the propagated signal for each anchor node. Based on this information, the location of a sensor node is derived by a weighted sum of coordinates of the surrounding anchor nodes. Our proposed algorithm is fully distributed and does not require any additional hardwares and the unreliable distance indications such as RSSI and LQI. Nevertheless, the simulation results show that the WMRL with two rings twice outperforms centroid algorithm. In the case of WMRL with three rings, the accuracy is approximately equal to WCL(Weighted Centroid Localization).

CWT-Based Method for Identifying the Location of the Impact Source in Buried Pipes (연속웨이브렛 변환을 이용한 충격음 위치 규명)

  • Kim, Eui-Youl;Kim, Min-Su;Lee, Sang-Kwon;Koh, Jae-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1555-1565
    • /
    • 2010
  • This paper presents a new method for indentifying the location of impact source in a buried duct. In a gas pipeline, the problem of leakage occurs due to the mechanical load exerted by construction equipment. Such leakage can cause catastrophic disasters in gas supply industries. Generally, the cross-correlation method has been used for indentifying the location of impact source in a pipeline. Since this method involves the use of the dispersive acoustic wave, it derives an amount of error in process of estimating the time delay between acoustic sensors. The object of this paper is to estimate the time delay in the arrival of the direct wave by using the wavelet transform instead of the dispersive wave. The wavelet transform based method gives more accurate estimates of the impact location than the cross-correlation method does. This method is successfully used to identify the location of impact force in an actual buried gas duct.

Improvement of Bit Error Rate through the Optimization of 320 Gbps WDM System with Non Zero-Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 320 Gbps WDM 시스템에서 최적화를 통한 비트 에러율 개선)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.103-113
    • /
    • 2006
  • The numerical methods of finding the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero-dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that two optimal parameters depend on each other, but less related with the searching procedure. The methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which is a serious problem but the condition in the case of applying the OPC into multi-channels WDM system.

  • PDF

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1854-1862
    • /
    • 2006
  • The numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are prosed, which are able to effectively compensate overall channels in $8{\times}40Gbps$Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.

Real-time Experiments of WA-DGNSS Transmission System using Pseudolite (의사위성을 이용한 광역보정정보 전송시스템에 대한 실시간 시험)

  • Kwon, Keum-Cheol;Shim, Duk-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.151-158
    • /
    • 2015
  • This paper presents the real-time experiments of WA-DGNSS transmission system using a pseudolite and shows the performance of WA-DGNSS. We implement a server/client program to receive the WA-DGNSS data from the master station, and fabricate a pseudolite to transmit the WA-DGNSS data to users. The performance of the WA-DGNSS transmission system is tested by software and hardware GPS receivers, respectively. The experiments show that the WA-DGNSS data is well transmitted to GPS receivers without errors and thus WA-DGNSS works well.

Influence of Extinction Ratio on Optimal Parameters of OPC for Improving BER of WDM Signals (WDM 신호의 BER 개선을 위한 OPC의 최적 파라미터에 대한 소광비의 영향)

  • Lee, Seong-Real;Kweon, Soon-Nyu
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.437-446
    • /
    • 2007
  • In this paper, we numerically induced the optimal values of optical phase conjugator (OPC) position and dispersion coefficients of fiber sections, which can improve the bit error rate (BER) and design the adaptive WDM transmission system, as a function of the extinction ratio (ER) of 10 dB and 20 dB in $16{\times}40$ Gb/s WDM transmission system. It is confirmed that these optimal parameter values for effectively compensating overall WDM channels are dependence on the extinction ratio of signals as well as modulation format, transmitted channel numbers, which were investigated in previous researches. It is also confirmed that ER of 20 dB has the advantage of designing flexible WDM systems using optimal parameters than ER of 10 dB.

  • PDF

The Study on Empirical Propagation Path Loss in the Airport Cargo Terminal Environment (공항 화물터미널 환경에서 실험적인 패스 로스에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1140-1147
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) Cargo Terminal. We measured one frequency among VHF channel bands. The transmitting site was located at different locations with different heights. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponent at IIA Cargo terminal area were 3.67 and 3.39 respectively in first and second transmitting sites. The deviation of prediction error is 14.42 and 10.38. The new path loss equation at the IIA Cargo terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

IR-UWB Location Positioning System with Wireless Synchronization (무선 동기를 이용한 IR-UWB 무선 측위 알고리즘)

  • Kang, Ji-Mymg;Lee, Soon-Woo;Kim, Yong-Hwa;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.27-32
    • /
    • 2008
  • Impulse Radio Ultra Wide Band (IR-UWB) system can be used to wireless position location system because of its unique very short pulse in the order of nanosecond. A few algorithms have been proposed to calculate location of sensors or tags. In this paper, we compare these algorithms and propose 'TDoA with wireless synchronization' as practical solution. Earlier algorithms need special logic to fix the duration to receive and send pulse or assume synchronization with wire. In proposed method, beacons synchronize each other using impulse and nodes can be made simple and cheap. We evaluated the performance and it shows 50% improved accuracy at the error range of 50cm.

Empirical Propagation Path Loss Model for ATC Telecommunication in the Concourse Environment (콘코스 환경에서 항공 정보통신의 실험적인 전파 경로 모델에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.765-772
    • /
    • 2013
  • In this paper, we studied the path loss model of Air Traffic Control(ATC) telecommunication radio channel at the Incheon International Airport(IIA) concourse area. We measured wave propagation characteristics on the two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency, and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at Concourse area were 3.1/3.13 and 3.01/3.38 respectively in 128.2MHz and 269.1MHz. The deviation of prediction error is 2.77/3.17 and 4.01/3.66. The new path loss equation at the Concourse area was also developed using the derived path loss parameters. The new path loss model was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Digital predistorters for communication systems with dynamic spectrum allocation (가변 스펙트럼 할당을 지원하는 광대역 전력 증폭기를 위한 디지털 전치왜곡기)

  • Choi, Sung-Ho;Seo, Sung-Won;Mah, Bak-Il;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.307-314
    • /
    • 2011
  • A new predistortion technique for dynamic spectrum allocation systems such as cognitive radio (CR) is proposed. The system model considered in this paper occupies a small band at a time, but the center frequency can be changed in the wide range of frequency. In this scenario. the front-end filter may not eliminate the harmonics of the power amplifier (PA) output. The proposed PD reduces the spectral regrowth of the fundamental signal at the carrier frequency (${\omega}_0$) and removes the harmonics ($2{\omega}_0$, $3{\omega}_0$, ...) at the same time. The proposed PD structure is composed of multiple predistorters (PDs) centered at integer multiples of ${\omega}_0$. The PD at ${\omega}_0$ is for removing spectral regrowth of the fundamental signal, and the others are for harmonic reduction. In the proposed PD structure, parameters of PDs are found jointly. Simulation results show that the spectral regrowth can be reduced by 20dB, and the 2nd and 3rd harmonics can be reduced down to -70dB from the power of the fundamental signal.