• Title/Summary/Keyword: 위치피드백

Search Result 192, Processing Time 0.017 seconds

Building the Process for Reducing Whole Body Bone Scan Errors and its Effect (전신 뼈 스캔의 오류 감소를 위한 프로세스 구축과 적용 효과)

  • Kim, Dong Seok;Park, Jang Won;Choi, Jae Min;Shim, Dong Oh;Kim, Ho Seong;Lee, Yeong Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2017
  • Purpose Whole body bone scan is one of the most frequently performed in nuclear medicine. Basically, both the anterior and posterior views are acquired simultaneously. Occasionally, it is difficult to distinguish the lesion by only the anterior view and the posterior view. In this case, accurate location of the lesion through SPECT / CT or additional static scan images are important. Therefore, in this study, various improvement activities have been carried out in order to enhance the work capacity of technologists. In this study, we investigate the effect of technologist training and standardized work process processes on bone scan error reduction. Materials and Methods Several systems have been introduced in sequence for the application of new processes. The first is the implementation of education and testing with physicians, the second is the classification of patients who are expected to undergo further scanning, introducing a pre-filtration system that allows technologists to check in advance, and finally, The communication system called NMQA is applied. From January, 2014 to December, 2016, we examined the whole body bone scan patients who visited the Department of Nuclear Medicine, Asan Medical Center, Seoul, Korea Results We investigated errors based on the Bone Scan NMQA sent from January 2014 to December 2016. The number of tests in which NMQA was transmitted over the entire bone scan during the survey period was calculated as a percentage. The annual output is 141 cases in 2014, 88 cases in 2015, and 86 cases in 2016. The rate of NMQA has decreased to 0.88% in 2014, 0.53% in 2015 and 0.45% in 2016. Conclusion The incidence of NMQA has decreased since 2014 when the new process was applied. However, we believe that it will be necessary to accumulate data continuously in the future because of insufficient data until statistically confirming its usefulness. This study confirmed the necessity of standardized work and education to improve the quality of Bone Scan image, and it is thought that update is needed for continuous research and interest in the future.

  • PDF

The Interrelationship between Riparian Vegetation and Hydraulic Characteristics during the 2020 Summer Extreme Flood in the Seomjin-gang River, South Korea (2020 여름 섬진강 대홍수시 하안식생과 수리 특성의 상호관계)

  • Lee, Cheolho;Lee, Keonhak;Kim, Hwirae;Baek, Donghae;Kim, Won;Kim, Daehyun;Lee, Hyunjae;Woo, Hyoseop;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Because active interactions occur among vegetation, hydrology, and geomorphology in riparian systems, any changes in one of these factors can significantly affect the other two. In this study, we evaluated these interactions at four sites (two in Gajeong and two in Hahan) along the Seomjin-gang River that was substantially devastated by an extreme flood in 2020. We examined the relationship between the riparian vegetation and the hydraulic characteristics of the flood using remote sensing, hydraulic modeling, and field surveys combined. The evaluation results showed that the floods caused a record-breaking rise of up to 43.1 m above sea level at the Yeseong-bridge stage gauge station (zero elevation 27.4 m) located between the Gajeong and Hahan sites, with the shear stress being four times higher in Hahan than in Gajeong. Additionally, the water level during the flood was estimated to be a maximum of 1 m higher depending on the location in the presence of riparian plants. Furthermore, both sites underwent extensive biological damage due to the flood, with 78-80% loss in vegetation, with preferential damage observed in large willow species, compared to Quercus acutissima. The above findings imply that all plant species exhibit different vulnerabilities towards extreme floods and do not induce similar behavior towards events causing a disturbance. In conclusion, we developed strategies for effectively managing riparian trees by minimizing flood hazards that could inevitably cause damage.