• Title/Summary/Keyword: 위치유지시스템

Search Result 826, Processing Time 0.031 seconds

Evaluation of Incident Detection Algorithms focused on APID, DES, DELOS and McMaster (돌발상황 검지알고리즘의 실증적 평가 (APID, DES, DELOS, McMaster를 중심으로))

  • Nam, Doo-Hee;Baek, Seung-Kirl;Kim, Sang-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.119-129
    • /
    • 2004
  • This paper is designed to report the results of development and validation procedures in relation to the Freeway Incident Management System (FIMS) prototype development as part of Intelligent Transportation Systems Research and Development program. The central core of the FIMS is an integration of the component parts and the modular, but the integrated system for freeway management. The whole approach has been component-orientated, with a secondary emphasis being placed on the traffic characteristics at the sites. The first action taken during the development process was the selection of the required data for each components within the existing infrastructure of Korean freeway system. After through review and analysis of vehicle detection data, the pilot site led to the utilization of different technologies in relation to the specific needs and character of the implementation. This meant that the existing system was tested in a different configuration at different sections of freeway, thereby increasing the validity and scope of the overall findings. The incident detection module has been performed according to predefined system validation specifications. The system validation specifications have identified two component data collection and analysis patterns which were outlined in the validation specifications; the on-line and off-line testing procedural frameworks. The off-line testing was achieved using asynchronous analysis, commonly in conjunction with simulation of device input data to take full advantage of the opportunity to test and calibrate the incident detection algorithms focused on APID, DES, DELOS and McMaster. The simulation was done with the use of synchronous analysis, thereby providing a means for testing the incident detection module.

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Development of relative radiometric calibration system for in-situ measurement spectroradiometers (현장관측용 분광 광도계의 상대 검교정 시스템 개발)

  • Oh, Eunsong;Ahn, Ki-Beom;Kang, Hyukmo;Cho, Seong-Ick;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.455-464
    • /
    • 2014
  • After launching the Geostationary Ocean Color Imager (GOCI) on June 2010, field campaigns were performed routinely around Korean peninsula to collect in-situ data for calibration and validation. Key measurements in the campaigns are radiometric ones with field radiometers such as Analytical Spectral Devices FieldSpec3 or TriOS RAMSES. The field radiometers must be regularly calibrated. We, in the paper, introduce the optical laboratory built in KOSC and the relative calibration method for in-situ measurement spectroradiometer. The laboratory is equipped with a 20-inch integrating sphere (USS-2000S, LabSphere) in 98% uniformity, a reference spectrometer (MCPD9800, Photal) covering wavelengths from 360 nm to 1100 nm with 1.6 nm spectral resolution, and an optical table ($3600{\times}1500{\times}800mm^3$) having a flatness of ${\pm}0.1mm$. Under constant temperature and humidity maintainance in the room, the reference spectrometer and the in-situ measurement instrument are checked with the same light source in the same distance. From the test of FieldSpec3, we figured out a slight difference among in-situ instruments in blue band range, and also confirmed the sensor spectral performance was changed about 4.41% during 1 year. These results show that the regular calibrations are needed to maintain the field measurement accuracy and thus GOCI data reliability.

Mushroom growth and cultivation environment at cultivation house of vinyl bag cultivation Shiitake mushroom on high-temperature period (고온기 표고 톱밥재배용 재배사 내의 환경 제어시스템과 버섯생육 온도)

  • Jhune, Chang-Sung;Kong, Won Sik;Park, Hye-Sung;Cho, Jae-Han;Lee, Kang-Hyo
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2014
  • Although sawdust cultivation of shiitake (Lentinula edodes) is becoming more common, it is insufficiently competitive in spring and autumn, the best time to breed shiitake. Thus, it is urgently needed to develop a technique for all year round cultivation of shiitake using mushroom growing beds. In the present study, the temperature changes according to the location of shiitake cultivation facilities were investigated. We confirmed that a refrigerator, an air conditioner, triple membranes, shiitake cultivation beds, fog nozzles which were installed in the shiitake cultivation facilities play an important role in keeping the low temperature. Bag cultivation of shiitake was tested in temperature variation from $14^{\circ}C$ to $29^{\circ}C$ with a $3^{\circ}C$ interval to know its cultivating temperature range in hot summer season. In summary, the sawdust cultivation of shiitake is possible when the temperature difference between top and bottom is maintained below $1^{\circ}C$. And the temperature of the shiitake cultivation facilities should be maintained below $23^{\circ}C$ in the induction period for fruitbody formation.

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.

Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges (탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구)

  • Lee, J.C.;Jung, S.H.;Baik, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • The detection methods are required to monitor and diagnose the abnormality on the insulation condition inside a gas-insulated switchgear (GIS). Due to a good sensitivity to the products decomposed by partial discharges (PDs) in $SF_6$ gas, the development of a SWNT gas sensor is actively in progress. However, a few numerical studies on the diffusion mechanism of the $SF_6$ decomposition products by PD have been reported. In this study, we modeled $SF_6$ decomposition process in a chamber by calculating temperature, pressure and concentration of the decomposition products by using a commercial CFD program in conjunction with experimental data. It was assumed that the mass production rate and the generation temperature of the decomposition products were $5.04{\times}10^{-10}$ [g/s] and over 773 K respectively. To calculate the concentration equation, the Schmidt number was specified to get the diffusion coefficient functioned by viscosity and density of $SF_6$ gas instead rather than setting it directly. The results showed that the drive potential is governed mainly by the gradient of the decomposition concentration. A lower concentration of the decomposition products was observed as the sensors were placed more away from the discharge region. Also, the concentration increased by increasing the discharge time. By installing multiple sensors the location of PD is expected to be identified by monitoring the response time of the sensors, and the information should be very useful for the diagnosis and maintenance of GIS.

Analysis of Pinewood Nematode Damage Expansion in Gyeonggi Province Based on Monitoring Data from 2008 to 2015 (경기도의 소나무재선충병 피해 확산 양상 분석: 2008 ~ 2015년 예찰 데이터를 기반으로)

  • Park, Wan-Hyeok;Ko, Dongwook W.;Kwon, Tae-Sung;Nam, Youngwoo;Kwon, Young Dae
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.486-496
    • /
    • 2018
  • Pine wilt disease (PWD) in Gyeonggi province was first detected in Gwangju in 2007, and ever since has caused extensive damage. Insect vector and host tree in Gyeonggi province are Monochamus saltuarius and Pinus koraiensis, respectively, which are different from the southern region that consist of Monochamus alternatus and Pinus densiflora. Consequently, spread and mortality characteristics may be different, but our understanding is limited. In this research, we utilized the spatial data of newly infected trees in Gyeonggi province from 2008 to 2015 to analyze how it is related to various environmental and human factors, such as elevation, forest type, and road network. We also analyzed the minimum distance from newly infected tree to last year's closest infected tree to examine the dispersal characteristics based on new outbreak locations. Annual number of newly infected trees rapidly increased from 2008 to 2013, which then stabilized. Number of administrative districts with infected trees was 5 in 2012, 11 in 2013, and 15 in 2014. Most of the infected trees was Pinus koraiensis, with its proportion close to 90% throughout the survey period. Mean distance to newly infected trees dramatically decreased over time, from 4,111 m from 2012 to 2013, to approximately 600 m from 2013 to 2014 and 2014 to 2015. Most new infections occurred in higher elevation over time. Distance to road from newly infected trees continuously increased, suggesting that natural diffusion dispersal is increasingly occurring compared to human-influenced dispersal over time.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.

Influences of Bulking Materials on Sustainable Livestock Mortality Composting (부자재 종류가 친환경적 사축퇴비화에 미치는 영향)

  • Won, Seung Gun;Park, Ji Young;Cho, Won Sil;Kwag, Jung Hoon;Choi, Dong Yoon;Ahn, Hee Kwon;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.483-488
    • /
    • 2013
  • To develop a sustainable composting method for livestock mortality, a natural aeration-composting process was designed and the influences of bulking materials on the mortality composting process were studied. Bulking materials (e.g., compost, swine manure, sawdust, and rice husks), easily supplied at the scene of an animal mortality outbreak, were tested in this research. A lab-scale composting system (W34 ${\times}$ L60 ${\times}$ H26 cm) was made using 100 mm styrofoam, and natural aeration was achieved through pipes installed on the bottom of the system. Four treatments were designed (compost, compost + swine feces, sawdust, and rice husks treatment groups) and all experiments were done in triplicates. During composting for 40 days, no leachate was observed in compost and sawdust treatment groups, whereas 18 and 8.2 ml leachate/kg-mortality was emitted from the compost + feces and rice husks treatment groups, respectively. Dimethyl disulfide (DMDS) emission during the composting was very low in all treatment groups, possibly due to the bio-filtering function of the compost cover layer on the pile. The mortality degradability in compost, compost + feces, sawdust, and rice husks groups was 25.3, 25.8, 13.5, and 14.5%, respectively, showing significantly higher levels in compost and compost + feces groups (p<0.05). Also, only the compost + feces group produced enough heat (over $55^{\circ}C$) and lasted for 7 days, indicating that bio-security cannot be guaranteed without feces supplementation.