• Title/Summary/Keyword: 위치결정 스테이지 시뮬레이션

Search Result 6, Processing Time 0.022 seconds

Bond Graph Modeling, Analysis and Control of Dual Stage System (본드그래프를 이용한 듀얼 스테이지 시스템의 모델링, 해석, 및 제어)

  • Wang, Wei-Jun;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1453-1459
    • /
    • 2012
  • The dual stage manipulator is composed of the voice coil motor (VCM) and piezoelectric ceramics transducer (PZT), which can produce the high precise displacement and express a well dynamic performance. However, inaccurate modeling of the dual stage will exacerbate the positioning accuracy. This paper presents an approach to model the dual stage system by using bond graph theory. And the state space equations can be derived through the bond graph straightforwardly, which can be used in computing simulations. Through designing the compensators for the dual stage system and simulating, the dual stage performs better dynamics characteristic than the single actuator system.

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion (요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상)

  • Ahn, Dahoon;Lee, Hakjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.554-560
    • /
    • 2020
  • In the manufacturing process of flat panel displays, a high-precision planar motion stage is used to position a specimen. Stages of this type typically use frictionless linear motors and air bearings, and laser interferometers. Real-time dynamic correction of the yaw motion error is very important because the inevitable yaw motion error of the stage means a change in the specimen orientation. Gantry control is generally used to compensate for yaw motion errors. Flexure units that allow rotational motion are applied to the stage to apply this method to a stage using an air-bearing guide. This paper proposes a method to improve the constant speed motion performance of a H-type XY stage equipped with air bearing and flexure units. When applying the gantry control to the stage, including the flexure units, the cause of the mutual ripple generated from the linear motors is analyzed, and adaptive learning control is proposed to compensate for the mutual ripple. A simulation was performed to verify the proposed method. The speed ripple was reduced to approximately the 22 % level. The ripple reduction was verified by simulating the stage state where yaw motion error occurs.

The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage (평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

A Study on the Optimal Structural Design and Computer Simulation of Delta Stage for ultra Precision Positioning (초정밀위치결정을 위한 델타스테이지의 최적 설계 및 컴퓨터 시뮬레이션에 관한 연구)

  • 김재열;김영석;송찬일;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.221-225
    • /
    • 2001
  • Recently, high accuracy and high precision are required in various industrial fields that are composed of semiconductor manufacturing apparatus and ultra precision positioning apparatus and information system and so on. The positioning technology is a very important one among them. This technology has been rapidly developed, its field needs for positioning accuracy to high as submicron. It is expected that accuracy with 10 nm in precision working and accuracy with 1 nm in ultra precision working are reached at the beginning of 2000s. Recently, to accomplish this positioning technology, many researches are concerned about it and make efforts it. This paper contain design technology of ultra precision 2-axis(X-Y Delta) stage for materialize to positioning accuracy with submicron, where, Delta stage is design as optimum against load and disturbance. And computer simulation is performed for stability and dynamic characteristic of Delta stage.

  • PDF

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.