• Title/Summary/Keyword: 위장관 간질

Search Result 34, Processing Time 0.026 seconds

Effects of Carthami Flos on Interstitial Cells of Cajal in the Gastrointestinal Tract (홍화가 위장관 카할간질세포에 미치는 효과)

  • Song, Ho-Joon;Kim, Jung-A;Han, Song-Ee;Kim, Hyung-Woo;Chae, Han;Kim, Byung-Joo;Kwon, Young-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.603-607
    • /
    • 2011
  • The purpose of this study is to investigate the effects of Carthami Flos on interstitial cells of Cajal in the gastrointestinal tract. Many regions of the tunica muscularis of the gastrointestinal (GI) tract display spontaneous contraction. These spontaneous contractions are mediated by periodic generation of electrical slow waves. Recent studies have shown that the interstitial cells of Cajal (ICCs) act as pacemakers and conductors of electrical slow waves in gastrointestinal smooth muscles. We investigated the cytotoxicity activity, antioxidant activity, and pacemaking activity. The cytotoxicity activity was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Antioxidant activities were determined by DPPH (1.1-diphenyl-2-picrylhydrazyl) radical scavenging capacity assay and DCFH-DA (2,7-dichlorofluorescein diacetate) method. The effects of Carthami Flos on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by using whole-cell patch-clamp techniques at $30^{\circ}C$. The addition of Carthami Flos (5, 10, $30{\mu}g$/ml) depolarized the resting membrane potentials in a concentration dependent manner. These results suggest that the GI tract can be targets for Carthami Flos, and their interaction can affect intestinal motility.

Climatological Characteristics in the Variation of Soil temperature in Korea (우리나라 지중온도 변동의 기후학적 특성)

  • Kim Seoung-Ok;Suh Myoung-Seok;Kwak Chong-Heum
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.93-105
    • /
    • 2005
  • Climatological characteristics in the variation of soil temperatures in Korea were investigated using Korea Meterological Administration's observation data. And the impacts of soil moisture on the variation of soil temperature were examined using observed precipitation data. The climatological averages of soil temperatures are ranged from 14.4 to $15.0^{\circ}C$ regardless of depths. And they showed an latitudinal gradient with a warm temperature at the southern region and 'U' shape as in the air temperature with a high value along the coastal region. The relatively higher heat capacity and low conductivity of soil compared to those of the air resulted in the significant delay of the maximum and minimum date with depth. As a results, soil acts as a heat source during winter while a heat sink during summer. Global warming and urban heat island have increased the soil temperatures with an average rate $0.3\~0.5^{\circ}C/10-year$ as in the air temperature during last 30 years $(1973\~2002)$. However, the warming rate is maximized during spring contrary to the winter in the air temperature. The temporal variation of soil temperatures is strongly affected by that of soil moisture through an modification of the heat capacity and heat convection. In general, the increased soil moisture clearly decreased the temporal variations and increased the deep layer soil temperatures during cold season.

Clinical manifestation of human bocavirus infection in children (소아 human bocavirus의 임상적 고찰)

  • Choi, Chang Sun;Pak, Chan Hee;Jung, Kwan;Lee, Gun;Sun, Kyu Keun;Kim, Eun Young;Kim, Kyoung Sim;Kim, Yong Wook;Seo, Jin-Jong;Chung, Yoon-Seok
    • Pediatric Infection and Vaccine
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2007
  • Purpose : Human bocavirus (HBoV) was recently identified world widely in clinical specimens from infants and children with respiratory tract illness, but the role of HBoV in respiratory tract illnesses is unknown. The aim of this study was to investigate the frequency and the clinical manifestation of HBoV in pediatric patients. Methods : We retrospectively investigated 1,777 throat swab obtained between 2005 and 2006 from pediatric in-patients with acute respiratory tract diseases at the Kwang-ju Christian Hospital. The medical records of patients with positive results were reviewed for demographic and clinical data of HBoV infections. Results : HBoV DNA was found in 84 (4.7%) of the 1,777 hospitalized children and the mean age was 19 months. The most common diagnosis were pneumonia (67.8%), bronchiolitis (35.7%). HBoV infections were found year-round, though most occurred in spring and winter months. Conclusion : HBoV is frequently found in hospitalized infants and children with acute respiratory tract diseases in Korea, but an association of HBoV with a distinct respiratory tract manifestation was not apparent. To clarify the clinical significance of HBoV, further evaluation of various age groups and clinical groups is needed.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.