• Title/Summary/Keyword: 위성 열해석

Search Result 185, Processing Time 0.022 seconds

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads (멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석)

  • Kim, Ji-Seok;Kim, Hui-Kyung;Kim, Min-Ki;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.455-466
    • /
    • 2020
  • In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.

Numerical and Experimental Thermal Validation on Pogo-pin based Wire Cutting Mechanism for CubeSat Applications (큐브위성용 포고핀 기반 열선절단 분리장치의 열적 거동 분석 및 검증)

  • Min-Young Son;Bong-Geon Chae;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2023
  • A nylon wire holding and release mechanism (HRM) has been widely used for deployable applications of CubeSat owing to its simplicity and low cost. In general, structural safety of solar panel with an HRM has been designed by performing structural analysis under a launch environment. However, previous studies have not performed thermal analysis for HRM in an on-orbit environment. In this study, Launch and Early Orbit Phase (LEOP) thermal analysis was performed to evaluate thermal stability of the mechanism in the orbital thermal environment of the pogo pin-based HRM applied to CubeSat. In addition, the effectiveness of the thermal design and performance of the pogo pin-based HRM were verified through a thermal vacuum test.

Sensitivity Analysis of Contact Resistance for Thermal Analysis of Spacecraft (위성 열해석을 위한 접촉열저항의 민감도 해석)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.117-125
    • /
    • 2004
  • Performing the sensitivity analysis of contact conduction on the basis of the thermal model already established, the study of thermal design is accomplished for the preparation of the future changes of mechanical interface design. A relatively simple thermal model is taken into consideration for the convenience of the analysis. A variety of the spacecraft bus voltages and the contact resistances are tried. As a consequence, when the mechanical interface condition is changed at the same module, the successful thermal design could be achieved if we design the heater to have sufficiently large power with reference to the heritage of contact resistance.

On-orbit Thermal Analysis of Pico-class Satellite STEP Cube Lab. for Verification of Fundamental Space Technology (우주기반기술 검증을 위한 극초소형 위성 STEP Cube Lab.의 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.795-801
    • /
    • 2014
  • STEP Cube Lab. classified as a pico-satellite has been being developed by SSTL(Space Technology Synthesis Laboratory) in Chosun University. Its main mission objective is to perform the on-orbit verification of core space technologies, which will be the potential candidates for future space missions. In this paper, to guarantee successful mission operation of the cube satellite under extremely severe space thermal environment condition, the system level thermal design and analysis has been performed. The effectiveness of the design has been verified through on-orbit thermal analysis of cube satellite.

Thermal Analysis on the Engineering Model of Command and Telemetry Unit for a Geostationary Communications Satellite (정지궤도 통신위성의 원격측정명령처리기 기술모델 열해석)

  • Kim, Jung-Hoon;Koo, Ja-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.114-121
    • /
    • 2004
  • Thermal design changes and analysis on the engineering model of Command Telemetry Unit(CTU) for a geostationary communications satellite arc performed for the purpose of developing an engineering qualification model. A thermal model is developed by using power consumption measurement values of each functional board and thermal cycling test results. In modeling heat dissipated EEE parts, heat dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board. All the EEE parts of CTU meet the requirement of their allowable temperature range when placed on the engineering qualification level of thermal vacuum environments in accordance with the proposed thermal design changes.

열진공 챔버 내의 불균일한 열환경이 시편에 미치는 영향에 관한 수치적 연구

  • Go, Tae-Sik;Seo, Hui-Jun;Jo, Hyeok-Jin;Park, Seong-Uk;Im, Seong-Jin;Mun, Gwi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.103.2-103.2
    • /
    • 2013
  • 위성체는 우주공간의 고진공 상태와 태양 복사열에 의한 고온 및 극저온이 반복되는 가혹한 환경으로 인해 주요 부품의 기능장애가 초래되므로 발사전 지상에서 열진공 시험장비를 이용한 열진공시험을 수행한다. 우수한 성능의 위성체 부품의 검증을 위해서 열환경 시험 요구에 따라 균일한 복사열이 매우 중요하나, 시험 조건을 비롯하여 여러 원인으로 인하여 열전달의 불균일성이 발생하게 된다. 이로 인해 시스템에 큰 영향을 미칠 수 있으므로, 시험 조건에 의한 열전달량을 고려하여 적절한 히터파워를 선정하고 챔버 내에 적절한 방열판과 챔버 슈라우드의 열교환이 간섭이 없도록 장비를 운용해야 한다. 본 연구에서는 상용프로그램인 FLUENT를 이용하여 열진공 챔버 내부 벽면의 불균일한 복사열에 따른 비정상 열전달 특성에 대하여 수치해석을 수행한 뒤 시편의 온도 분포 및 열전달 특성에 대해 비교분석하였다.

  • PDF

The Correlation of Satellite Thermal Mathematical Model using Results of Thermal Vacuum Test on Structure-Thermal Model (저궤도 인공위성 열-구조 모델 열진공시험 결과를 활용한 열모델 보정)

  • Lee, Jang-Joon;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.916-922
    • /
    • 2009
  • Because thermal design of satellite carrying out mission in space is performed by thermal analysis result using thermal mathematical model, accuracy of thermal mathematical model is important and it can be improved by model correlation. Correlation steps of satellite thermal math model are composed of modeling of satellite configuration placed in thermal vacuum chamber, verification of correspondence between thermal math model and real satellite configuration, and adjustment of modeling parameters from major part to minor part etc. In this study, correlation success criteria was established and correlation for satellite thermal math model was performed using result of thermal vacuum test of satellite structure-thermal model to meet the success criteria. The overall results satisfied the criteria and this correlated thermal model was applied for detailed thermal design of satellite.

Thermal Design and Analysis for Two-Axis Gimbal-Type X-Band Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 X-밴드 안테나의 열설계 및 궤도 열해석)

  • Chae, Bong-Geon;You, Chang-Mok;Chang, Su-Young;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna for CAS(Compact Advanced Satellite) transmits large amount of image data to ground station regardless of satellite attitude and orbital motion. This antenna mounted on the external surface of the satellite is directly exposed to the extreme space with thermal environment during the orbital operation. Therefore, a proper thermal design is needed to maintain the antenna itself as well as other main components within allowable temperature range. In this study, the thermal design effectiveness of two-axis gimbal X-band antenna was verified through the thermal analysis. In addition, required power and duty cycle of heater were estimated through the thermal analysis under conditions of system level thermal vacuum test and on-orbit thermal environment. The thermal analysis results indicated that all the main components of X-band antenna satisfy the allowable temperature requirement.

해석해를 이용한 발사시 위성체 열해석

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Satellite mounted on the launch vehicles experiences several environmental heating, such as direct solar flux, Earth IR, Albedo, and free molecular heating during faring jettison-separation launch stage. So, the most outer payload box of satellite is under the worst hot condition. The thermal governing equation is reduced into 1st order ordinary differential equation and analytic solution is acquired if payload box is assumed as a single lumped mass. Applying the analytic solution, we can predict the temperature increase of payload box experienced the worst hot condition, easily.

  • PDF

Thermal Pointing Error Analysis of Satellite (인공위성 열지향오차 해석)

  • Kim, Seon-Won;Kim, Jin-Hui;Lee, Jang-Jun;Hwang, Do-Sun
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • LEO Satellite that observes earth with optical camera or synthetic aperture radar is placed at hundreds of kilometers altitude and undergoes severe thermal load. The thermal deformation of structure by the thermal load makes payload not to point toward wanted ground position. The payload pointing direction change by thermal distortion is called thermal pointing error. This is carried out by 3 steps that are thermal analysis, temperature conversion and structural analysis. In this paper, the possibility of successful mission through thermal pointing error analysis is described.

  • PDF