• Title/Summary/Keyword: 위성 연료

Search Result 103, Processing Time 0.026 seconds

A Development Trend Study of Bipropellant Rocket Engine for Orbit Transfer and Attitude Control of Satellite (인공위성 궤도전이 및 자세제어용 이원추진제 로켓엔진의 개발현황)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • A propulsion system of a satellite provides a necessary thrust to reach to the final orbit after a separation from a launch vehicle. Also, it supplies pulse moments to maintain the satellite in a mission orbit and for its attitude controls during a mission life time. The present study investigates the development trend of bipropellant rocket engines for an orbit transfer and an attitude control of a satellite using monomethylhydrazine and hydrazine for fuel and dinitrogen tetroxide for oxidizer to derive fundamental specifications which are necessary for domestic development researches. Also, their major performance characteristics are summarized.

하이브리드 모터를 적용한 초소형 공중발사체 설계

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.77-77
    • /
    • 2002
  • 초소형 공중발사체 설계 시 하이브리드 모터의 적용가능성에 대한 연구를 실시하였다. HTPB/LOX를 추진제로 하여 마차바퀴형 연료 그레인, 산화제 탱크 가압방식을 사용하였고, 성능특성을 계산하기 위하여 하이브리드 연료의 연소율이 일정하다고 가정 하였다. 본 연구에 사용된 임무는 중량 3.5kg의 나노위성을 근지점 고도 200km, 원지점 고도 1,500km의 타원궤도로 진입시키는 것을 목적으로 하는 로켓의 1단 부분에 관한 것으로 1단의 발사속도는 M=1.3, 발사고도는 12km, 연소종료 고도는 40km이다. 1단에 대한 페이로드 중량은 127.5kg이고, 속도증가분($\Delta$V)은 3,330m/s이다. 모선은 F-4E를 사용하였고 모선의 특성상 발사체의 총 중량이 1,000kg이하로 제한되고 길이와 직경이 5m${\times}$5m로 제한되나 1단에 대한 길이의 제한조건은 현재까지 명확히 정립되지 않은 상태이다. 설계과정에서의 변수는 연료 그레인 포트 개수, 초기 산화제 플럭스, 연소실 압력을 사용했고, 설계 제한조건은 추진제 중량, 평균 비추력, 평균 추력, 연소시간, 1단 길이, 직경, 연소시간이고, 이들의 범위는 모선의 특성과 초소형 공중발사체의 임무특성에 맞게 설정하였다.

  • PDF

정지궤도 통신위성의 추진시스템 개념설계 연구

  • Park, Eung-Sik;Park, Bong-Kyu;Kim, Jeong-Soo
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 2002
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment (ΔV) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through Trade-Off Study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF

A Study on the Performance of COMS CPS during LEOP (천리안 위성의 LEOP기간 동안의 추진계 성능 연구)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.258-263
    • /
    • 2012
  • In this paper the Chemical Propulsion Subsystem of COMS is briefly explained and some telemetries acquired by a series operations of CPS during the Launch and Early Operation Phase of COMS are presented. The pressure and temperature of pressurant tank telemetries are compared with the results of the developed computer program. The changes in pressure are due to the two major phases. The first one is the initialization phases of CPS composed of the venting phase to vent the helium gas in the pipe network from the downstream of the propellant tanks to the thrusters for safety, the priming phase to fill the vented pipe network with oxidizer and fuel respectively and then the pressurization phase to pressurize the ullage of propellant tank to regulated pressure. And the other is the apogee engine firings in which COMS CPS is in the orbit raising phase to use helium as a pressurant to keep the pressure of propellant tank as the liquid apogee engine get fired until COMS reached to the target orbit. This program can be applicable to prepare basis design data of the next Geostationary Satellite CPS.

The Launch of the COMS by Ariane-5 Launch Vechicle (아리안-5 발사체를 이용한 통신해양기상위성 발사)

  • Lee, Ho-Hyung;Kim, Bang-Yeop;Choi, Jung-Su;Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2008
  • The launch of the COMS by using Ariane-5 launch vehicle is introduced. First, the COMS is introduced briefly, and then, the Ariane-5 launch vehicle is introduced including detail description of the improvement of Vulcain-1 engine of Ariane-5G to Vulcain-2 engine of Ariane-5ECA for 20% increase of thrust. Then, the launch process of the COMS is introduced. The COMS will be launched from the Guiana Space Center in Kourou, French Guiana. After the final check at PPF the COMS is transferred to HPF in the same building for fueling, and it is integrated to the launch vehicle adaptor at HPF, too. Then, this assembly is transferred to Final Assembly Building. After the satellites to be launched together are integrated to the launch vehicle on the launch table in the Final Assembly Building, the launch table loaded with the launch vehicle is moved to the launch pad for launch. The events during the launch vehicle flight is also introduced.

A Study on the Object-based Classification Method for Wildfire Fuel Type Map (산불연료지도 제작을 위한 객체기반 분류 방법 연구)

  • Yoon, Yeo-Sang;Kim, Youn-Soo;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2007
  • This paper showed how to analysis the object-based classification for wildfire fuel type map using Hyperion hyperspectral remote sensing data acquired in April, 2002 and compared the results of the object-based classification with the results of the pixel-based classification. Our methodological approach for wildfire fuel type map firstly processed correcting abnormal pixels and atypical bands and also calibrating atmospheric noise for enhanced image quality. Fuel type map is characterized by the results of the spectral mixture analysis(SMA). Object-based approach was based on segment-based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery.

  • PDF

State of the Art in the Development of Nitrous Oxide Fuel Blend as Green propellant (친환경 추진제로서의 아산화질소 연료 혼합물 개발동향)

  • Kwon, Minchan;Yang, Juneseo;Lim, Seongtaek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1061-1067
    • /
    • 2017
  • Since the 1960s hydrazine is used as a propellant to power rocket, satellites or deep space missions. Due to hydrazine's high toxicity and operating cost, the request for Green Propellant as energetic ionic liquids(HAN, ADN), nitrous oxide blends is growing. Nitrous Oxide Fuel Blend(NOFB) having advantage of a bipropellant performance as well as the advantage of a mono-propellant in respect to the simple propellant tank and feed system. It is worth replacing traditional hydrazine based propellant system if handled and designed properly.

  • PDF

COMS Momentum Dumping Optimal Thruster Set Selection (통신해양기상위성(COMS)의 모멘텀 덤핑 최적 추력기 선택)

  • Park, Bong-Gyu;Park, Yeong-Ung;Lee, Sang-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.54-60
    • /
    • 2006
  • This paper discusses wheel offloading approaches of the COMS which has a single solar array system for the accommodation of the optical payloads. First of all, in an effort to reduce fuel consumption and reflect practical implementation point of view, thruster sets for wheel offloading are proposed based on numerical analyses taking into account the COMS configuration. In this analysis, it is assumed that the wheel offloading is conducted twice a day. Secondly, in order to evaluate the effectiveness of the proposed thruster sets, orbit simulations are conducted for several wheel offloading approaches and compared.

Effect on the Space and Global Environments by the Space Debris (인공위성이 우주 및 지구환경에 미치는 영향 - 우주폐기물(Space Debris) 중심으로 -)

  • Kim, Won-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.191-200
    • /
    • 2000
  • Recently, NORAD reported that only 6% of the total space objects cataloged in the table as above 10cm objects were being operated for the space missions and the others were just non-operated objects, such as rocket body, useless satellites which were finished their missions, and other fragments of space debris. A major contributor to the orbital debris background has been object breakup. Breakups generally are caused by explosions and collisions. Several international research groups and big countries' governments are trying to develop advanced technology for de-orbiting and to design new future satellites' modeling. The future need to be considered continuously that kind of technology and designing to preserve space and global environmental safety and to maintain welfare of mankind forever.

  • PDF